POJ1401-Factorial

原创 2013年12月03日 17:09:49

Description

The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 

ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N. 

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function. 

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1 < N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently. 

Input

There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.

Output

For every number N, output a single line containing the single non-negative integer Z(N).

Sample Input

6
3
60
100
1024
23456
8735373

Sample Output

0
14
24
253
5861
2183837

 

 

 

题意是说求N!后面有多少个0.从网上看到是数论知识,说的是

//逢一个因子5会产生一个0,
//如10!=10*9*8*7*6*5*4*3*2*1中有两个因数5,能构成结尾2个0。
//数论:这道题的正解就是对sum=n/5+n/25+n/125......n/(5^k),直到n<(5^k).复杂度是log5(N)

 

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<ctype.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<set>
#include<math.h>
#include<vector>
#include<map>
#include<deque>
#include<list>
using namespace std;
int numl(int n)
{
    int count=0;
    while(n)
    {
        count+=n/5;
        n/=5;
    }
    return count;
}
//逢一个因子5会产生一个0,
//如10!=10*9*8*7*6*5*4*3*2*1中有两个因数5,能构成结尾2个0。
//数论:这道题的正解就是对sum=n/5+n/25+n/125......n/(5^k),直到n<(5^k).复杂度是log5(N)
int main()
{
    int n,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        if(n==1)
            printf("0\n");
        else
        {
            int w=numl(n);
            printf("%d\n",w);
        }
    }
    return 0;
}


 

 

 

 

 

Netty 学习(6)Netty Example 计算序列的阶乘

FactorialClient.java Sends a sequence of integers to  FactorialServer to calculate  the factorial of...
  • yang382197207
  • yang382197207
  • 2014年01月22日 16:32
  • 1254

斯坦福大学机器学习——因子分析(Factor analysis)

一、问题的提出 在EM算法求解高斯混合模型一文中,我们的样本集 ,而样本的数量m远大于样本的维度n,因此,可以轻易的构造出高斯混合模型。 现在,我们再看下不同的情况:假如,或,我们将很难构建一个普...
  • linkin1005
  • linkin1005
  • 2014年12月15日 16:11
  • 7235

C++Primer第五版 6.3.2节练习

练习6.30:编译第200页的str_subrange函数,看看你的编译器是如何处理函数中的错误的。 答: E:\C++ Primer 第五版 练习和解答\第六章 函数\习题程序\练习6.30.c...
  • fengzhanghao23
  • fengzhanghao23
  • 2015年09月15日 10:49
  • 1576

POJ - 1401 SPOJ - FCTRL Factorial

阶乘
  • nameofcsdn
  • nameofcsdn
  • 2016年08月21日 07:00
  • 1258

【POJ】1401 - Factorial(阶乘最后0的个数)

Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15475   Acc...
  • wyg1997
  • wyg1997
  • 2016年03月22日 14:01
  • 164

POJ 1401:Factorial 求一个数阶乘的末尾0的个数

Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15137   Acc...
  • u010885899
  • u010885899
  • 2015年09月01日 11:07
  • 293

UVALive2158 POJ1401 HDU1124 ZOJ2024 Factorial【分析思维】

Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 16314   Accepted: 10052...
  • tigerisland45
  • tigerisland45
  • 2017年06月24日 09:04
  • 349

ACM-简单题之Factorial——poj1401

ACM 简单题 Factorial poj1401
  • lx417147512
  • lx417147512
  • 2014年05月19日 12:59
  • 1981

poj 1401 Factorial

DescriptionThe most important part of a GSM network is so called Base Transceiver Station (BTS). The...
  • joan333
  • joan333
  • 2011年07月22日 10:53
  • 96

Factorial hoj poj

/*怎么说呢。看了两份报告,算是规律吧。 10可以分解成2*5,也就是说N!末尾有多少个0就可以分解成多少个5.。 特别的,25可以分解成两个5,125可以分解成3个5. 所以写法如下。*/ #inc...
  • ehi11
  • ehi11
  • 2012年09月18日 22:52
  • 471
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ1401-Factorial
举报原因:
原因补充:

(最多只允许输入30个字)