Caffe源码解读 - 总览

Caffe源码解读 类图 SyncedMem类 该类是caffe数据存储的最底层,里面规定了什么时候分配内存(显存),数据的存储位置以及数据的指针,封装了CPU和GPU之间数据交互的方法,并提供简单的接口进行数据的操作。 Blob类 Blob是caffe基本的数据结构,其主要做了两种封装: ...

2019-05-13 18:30:13

阅读数 11

评论数 0

牛客刷题 - 网易2018校招编程题(思维 & 贪心 & )

这套题的难受还是有的,不过有些题想想还是可以做的,只是有些题用暴力的方法感觉有点失望。 Q1: 解题思路:这个题很明显,一个只能产奇数,一个只能产偶数,倒着分奇偶跑一遍就行啦~ 代码如下: #include <cstdio> #include &am...

2018-10-08 17:58:32

阅读数 161

评论数 2

牛客刷题 - 2017百度春招(暴力 & 思维 & dp)

一共五道题,前三道没什么难度,暴力枚举就可以了。后两道需要想想,但是也不难(dp还是我的弱项啊) Q1: 解题思路:这个没什么说的,随便都能过。 代码如下: #include <cstdio&gt...

2018-09-25 23:08:35

阅读数 54

评论数 0

牛客刷题 - 腾讯2017暑期实习笔试(LCS & 暴力 & 计数)

一共三道题,感觉第一题要想想,剩下两道比较简单,直接做就行了 Q1: 解题思路:对字符串进行翻转后,求一下最长公共子序列就是最长的回文串,用总长度减去最长回文串的长度即为要删去的字符数 代码如下: #include<cstdio> #include&...

2018-09-24 18:48:02

阅读数 1311

评论数 0

SSD源码解读 - multibox_loss_layer

上一篇博客说了DetectionOut层怎么从conf、loc、prior中获取检测框,是检测的关键代码。 现在我们回到训练环节,看一下Mutibox层是怎么计算loss并完成反向传播的。 首先贴一个MutiboxLoss层的prototxt配置: layer { name: &...

2018-09-13 11:49:17

阅读数 364

评论数 0

SSD源码解读 - detection_output_layer

这段代码是DetectionOut层的实现,表示怎么从PriorBox、loc、conf三个层得到检测框的。 源码如下: detection_output_layer.cpp #include <algorithm> #include ...

2018-08-31 16:13:44

阅读数 960

评论数 0

SSD源码解读 - prior_box_layer

一直不是很理解检测结果是怎么出来的,学习最快的方法就是看源码啦,今天先从prior box层开始。 这层的作用就是对不同位置的每个特征点产生不同大小的default box,这些box的大小、形状由prototxt的prior_box_param来控制。随便拿出一个模型的prior box层来举...

2018-08-30 19:15:42

阅读数 288

评论数 0

Caffe-Ristretto源码解读

由于当前任务是量化网络模型,用到了caffe的Ristretto,这里解读一下源码以便以后自己灵活运用 首先看一下量化模型时的脚本: #!/usr/bin/env sh folder=examples/ristretto/carperson_wyg echo ${folder} LD_LI...

2018-08-10 18:27:57

阅读数 886

评论数 4

吴恩达机器学习 - 推荐系统

题目链接:点击打开链接 笔记: 每个算法最重要的莫过于代价函数了: 公式: 求代价: 求梯度: Code(cofiCostFunc.m): function [J, grad] = cofiCostFunc(params, Y, R, nu...

2018-06-25 22:26:51

阅读数 401

评论数 0

吴恩达机器学习 - 异常检测

题目链接:点击打开链接 笔记: 数据可视化: load('ex8data1.mat'); % Visualize the example dataset plot(X(:, 1), X(:, 2), 'bx'); axis([0 30 0 30]); xlabel('...

2018-06-25 21:09:33

阅读数 129

评论数 0

吴恩达机器学习 - PCA算法降维

题目链接:点击打开链接 笔记: 数据可视化: 求矩阵U和S(pca.m): function [U, S] = pca(X) %PCA Run principal component analysis on the dataset X % [U, S, X] = pca...

2018-06-25 13:08:17

阅读数 380

评论数 0

吴恩达机器学习 - 无监督学习——K-means算法

题目链接:点击打开链接 笔记: 核心步骤: 那我们就实现这两个函数就行啦: findClosestCentroids.m(把每个点染色): function idx = findClosestCentroids(X, centroids) %FINDCLOSEST...

2018-06-25 12:02:37

阅读数 755

评论数 0

吴恩达机器学习 - 支持向量机(SVM)

题目链接:点击打开链接 笔记: 无核SVM 数据可视化: Code(命令行): % Load from ex6data1: % You will have X, y in your environment load('ex6data1.mat'); % Plo...

2018-06-24 14:40:42

阅读数 897

评论数 0

吴恩达机器学习 - 评估假设

题目链接:点击打开链接 正则线性回归: 可视化数据: Code: load ('ex5data1.mat'); plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); 结果为: 代价函数: 公式(并正则化): Co...

2018-06-22 20:47:29

阅读数 280

评论数 0

吴恩达机器学习 - 神经网络的反向传播算法

题目链接:点击打开链接 笔记: 因为这一部分的内容确实难度比较大,所以我准备按最后一页笔记的思路一点一点的写出实现的思路和我的想法。 首先让数据可视化 执行代码 load('ex4data1.mat'); m = size(X, 1); sel = ra...

2018-06-21 20:59:35

阅读数 1635

评论数 11

吴恩达机器学习 - 神经网络

题目链接:点击打开链接 先贴出笔记: 本题模型: 代码 predict.m(其实要实现的就这一个): function p = predict(Theta1, Theta2, X) %PREDICT Predict the label of an inpu...

2018-06-19 21:27:17

阅读数 178

评论数 0

吴恩达机器学习 - 逻辑回归——多元分类

题目链接:点击打开链接 学习笔记: 数据可视化: load('ex3data1.mat'); m = size(X, 1); rand_indices = randperm(m); %随机置换每个样本 sel = X(rand_indices(1:100), :)...

2018-06-19 20:47:49

阅读数 365

评论数 0

吴恩达机器学习 - 逻辑回归的正则化

题目链接:点击打开链接 先贴笔记 代码: costFunction.m(求代价和各方向梯度)(注意:Θ0Θ0Θ_{0}单独计算): function [J, grad] = costFunctionReg(theta, X, y, lambda) %COSTFUNCTI...

2018-06-19 15:07:25

阅读数 578

评论数 0

吴恩达机器学习 - 逻辑回归

题目链接:点击打开链接 先贴笔记 然后是代码 plotData.m(可视化数据): function plotData(X, y) %PLOTDATA Plots the data points X and y into a new figure % ...

2018-06-19 12:49:09

阅读数 229

评论数 0

吴恩达机器学习 - 正规函数

题目链接:点击打开链接 老规矩先贴笔记 按照公式写代码就可以啦: normalEqn.m: function [theta] = normalEqn(X, y) %NORMALEQN Computes the closed-form solution to linear reg...

2018-06-18 19:40:21

阅读数 116

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭