[BZOJ3757]苹果树(树上莫队+分块)

题目:

我是超链接

题解:

我们刚刚学习了一种树上分块的方法,然后对于每个询问以左端点所在的块为第一关键字,右端点的dfs序为第二关键字排序。
那么如何进行区间的转移呢?我们来证明一下!【诶等等公式恐惧的朋友们不要走】

定义 S(u,v) S ( u , v ) 表示u到v路径上的节点集合,root为根节点,lca(u,v)为u,v的lca
那么
S(u,v)=S(root,u) xor S(root,v) xor lca(u,v)
xor前面接触过,是集合的【对称差】,简单来说就是节点出现两次消掉
lca是个单点,我们再定义
T(u,v)=S(root,u) xor S(root,v)
考虑将curU移动到targetU前后T(curU,curV)的变化
T(curU,curV)=S(root,curU) xor S(root,curV)
T(targetU,curV)=S(root,targetU) xor S(root,curV)
两个分别xor一下
T(curU,curV) xor T(targetU,curV)=S(root,curU) xor S(root,curV) xor S(root,targetU) xor S(root,curV)
我们消一下(交换律+结合律)
T(curU,curV) xor T(targetU,curV)=S(root,curU) xor S(root,targetU)
留下我们要求的T(targetU,curV),去掉另一个,不如xor T(curU,curV)
T(targetU,curV)=S(root,curU) xor S(root,targetU) xor T(curU,curV)
这前两项S有点眼熟?
T(targetU,curV)=T(curU,curV) xor T(curU,targetU)
哎呀这么简短了真是神清气爽啊,那么做的时候维护T,然后计算的时候在加上LCA就可以了
突然感觉不推柿子也可以看出来结论?!

代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int sz=24;
const int N=100005;
int tot,sum,ans[N],pos[N],dfn[N],point[N],v[N],nxt[N],h[N],nn,top,f[N][sz],mi[sz],block,cnt,stack[N],num[N],a[N];
bool vis[N];
struct hh{int u,v,a,b,id;}q[N];
int cmp(hh a,hh b){return pos[a.u]<pos[b.u] || (pos[a.u]==pos[b.u] && dfn[a.u]<dfn[b.u]);}
void addline(int x,int y)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;
    ++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x;
}
void dfs(int x,int fa)
{
    dfn[x]=++nn; h[x]=h[fa]+1;int bottom=top;
    for (int i=1;i<sz;i++) 
      if (h[x]<mi[i]) break;
      else f[x][i]=f[f[x][i-1]][i-1]; 
    for (int i=point[x];i;i=nxt[i])
      if (v[i]!=fa) 
      {
        f[v[i]][0]=x,dfs(v[i],x);
        if (top-bottom>=block)
        {
            ++cnt;
            while (top!=bottom) pos[stack[top--]]=cnt;
        }
      }
    stack[++top]=x;
}
int lca(int x,int y)
{
    if (h[x]<h[y]) swap(x,y);
    int k=h[x]-h[y];
    for (int i=0;i<sz;i++)
      if (k&(1<<i)) x=f[x][i];
    if (x==y) return x;
    for (int i=sz-1;i>=0;i--)
      if (f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
    return f[x][0];
}
void change(int x)
{
    if (vis[x])
    {
        vis[x]=0; num[a[x]]--;
        if (!num[a[x]]) sum--;
    }else
    {
        vis[x]=1; num[a[x]]++;
        if (num[a[x]]==1) sum++;
    }
}
void reverse(int x,int y)
{
    while (x!=y)
      if (h[x]<h[y]) change(y),y=f[y][0];
      else change(x),x=f[x][0];
}
int main()
{
    int n,m,x,y,root;scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    for (int i=1;i<=n;i++)
    {
        scanf("%d%d",&x,&y);
        if (!x) root=y;
        else if (!y) root=x; 
        else addline(x,y);
    }
    mi[0]=1;for (int i=1;i<sz;i++) mi[i]=mi[i-1]*2;
    block=sqrt(n);dfs(root,0);
    ++cnt; while (top) pos[stack[top--]]=cnt;
    for (int i=1;i<=m;i++)
    {
        scanf("%d%d%d%d",&q[i].u,&q[i].v,&q[i].a,&q[i].b);
        if (dfn[q[i].u]>dfn[q[i].v]) swap(q[i].u,q[i].v);
        q[i].id=i;
    }
    sort(q+1,q+m+1,cmp);
    int t=lca(q[1].u,q[1].v);
    reverse(q[1].u,q[1].v);
    change(t);
    ans[q[1].id]=sum;
    if (num[q[1].a] && num[q[1].b] && q[1].a!=q[1].b) ans[q[1].id]--;
    for (int i=2;i<=m;i++)
    {
        change(t); reverse(q[i-1].u,q[i].u); reverse(q[i-1].v,q[i].v);
        t=lca(q[i].u,q[i].v);change(t);
        ans[q[i].id]=sum;
        if (num[q[i].a] && num[q[i].b] && q[i].a!=q[i].b) ans[q[i].id]--;
    }
    for (int i=1;i<=m;i++) printf("%d\n",ans[i]);
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值