Description
Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.
Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo’s place) to crossing n (the customer’s place). You may assume that there is at least one path. All streets can be travelled in both directions.
Input
The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.
Output
The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.
Sample Input
1
3 3
1 2 3
1 3 4
2 3 5
Sample Output
Scenario #1:
4
用构造最小生成树的方法,每次加入生成树的是当前权值最大的边,到达n点停止,这里如果没停止就会受其他边的影响WA掉。
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <cstdio>
#include <map>
#include <set>
#include <cmath>
#include <algorithm>
#define INF 0x3f3f3f3f
#define MAXN 1010
#define mod 1000000007
using namespace std;
int n,m,mp[MAXN][MAXN],vis[MAXN],lowc[MAXN];
int prim(int n)
{
memset(vis,0,sizeof(vis));
vis[1]=1;
for(int i=1; i<=n; ++i)
lowc[i]=mp[1][i];
int ans=INF;
for(int i=2; i<=n; ++i)
{
int maxc=-2;
int p=-1;
for(int j=1; j<=n; ++j)
if(!vis[j]&&maxc<lowc[j])
{
maxc=lowc[j];
p=j;
}
if(maxc<ans)
ans=maxc;
if(p==n)
break;
vis[p]=1;
for(int j=1; j<=n; ++j)
if(!vis[j]&&lowc[j]<mp[p][j])
lowc[j]=mp[p][j];
}
return ans;
}
int main()
{
int t,cnt=1;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
memset(mp,-1,sizeof(mp));
for(int i=0; i<m; ++i)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
mp[a][b]=mp[b][a]=c;
}
printf("Scenario #%d:\n",cnt++);
printf("%d\n\n",prim(n));
}
return 0;
}

本文介绍了一个寻找从起点到终点的最大运输重量的问题。通过构建最小生成树,并不断选择最大权重的边来更新路径,最终确定从起点到指定终点的最大允许运输重量。
5671

被折叠的 条评论
为什么被折叠?



