3304 水果姐逛水果街Ⅰ
时间限制: 2 s
空间限制: 256000 KB
题目等级 : 钻石 Diamond
题解
题目描述 Description
水果姐今天心情不错,来到了水果街。
水果街有n家水果店,呈直线结构,编号为1~n,每家店能买水果也能卖水果,并且同一家店卖与买的价格一样。
学过oi的水果姐迅速发现了一个赚钱的方法:在某家水果店买一个水果,再到另外一家店卖出去,赚差价。
就在水果姐窃喜的时候,cgh突然出现,他为了为难水果姐,给出m个问题,每个问题要求水果姐从第x家店出发到第y家店,途中只能选一家店买一个水果,然后选一家店(可以是同一家店,但不能往回走)卖出去,求每个问题中最多可以赚多少钱。
输入描述 Input Description
第一行n,表示有n家店
下来n个正整数,表示每家店一个苹果的价格。
下来一个整数m,表示下来有m个询问。
下来有m行,每行两个整数x和y,表示从第x家店出发到第y家店。
输出描述 Output Description
有m行。
每行对应一个询问,一个整数,表示面对cgh的每次询问,水果姐最多可以赚到多少钱。
样例输入 Sample Input
10
2 8 15 1 10 5 19 19 3 5
4
6 6
2 8
2 2
6 3
样例输出 Sample Output
0
18
0
14
数据范围及提示 Data Size & Hint
0<=苹果的价格<=10^8
时间限制: 2 s
空间限制: 256000 KB
题目等级 : 钻石 Diamond
题解
题目描述 Description
水果姐今天心情不错,来到了水果街。
水果街有n家水果店,呈直线结构,编号为1~n,每家店能买水果也能卖水果,并且同一家店卖与买的价格一样。
学过oi的水果姐迅速发现了一个赚钱的方法:在某家水果店买一个水果,再到另外一家店卖出去,赚差价。
就在水果姐窃喜的时候,cgh突然出现,他为了为难水果姐,给出m个问题,每个问题要求水果姐从第x家店出发到第y家店,途中只能选一家店买一个水果,然后选一家店(可以是同一家店,但不能往回走)卖出去,求每个问题中最多可以赚多少钱。
输入描述 Input Description
第一行n,表示有n家店
下来n个正整数,表示每家店一个苹果的价格。
下来一个整数m,表示下来有m个询问。
下来有m行,每行两个整数x和y,表示从第x家店出发到第y家店。
输出描述 Output Description
有m行。
每行对应一个询问,一个整数,表示面对cgh的每次询问,水果姐最多可以赚到多少钱。
样例输入 Sample Input
10
2 8 15 1 10 5 19 19 3 5
4
6 6
2 8
2 2
6 3
样例输出 Sample Output
0
18
0
14
数据范围及提示 Data Size & Hint
0<=苹果的价格<=10^8
0<n,m<=200000
这道题有点骚。。
好像是我的第一道线段树应用?
之前见过几道线段树应用题,一直不会写。。
我们想用线段树维护什么东西
首先考虑一个节点内维护什么
然后考虑如何合并两个节点
对于这道题
我们考虑一个区间的左右两个子区间
三种情况:
全部在左边解决(买、卖)或全部在右边
在左边买,右边卖(从左走到右)
最后一种策略即右边的最大值-左边最小值
然后取三个的最大值作为当前节点的最优解
这样我们一个节点需要维护四个东西
max,min,从左到右最优,从右到左最优
然后我还遇到的一个难点是区间查询的时候如何合并
问了Chorolop,发现了一个很好的办法
其实我们这个query函数直接返回一个结构体就行了
然后合并就可以直接用上面的合并策略了
注意一下不要有空的结构体就行了
#include<cstdio>
#include<cstring>
#include<iostream>
const int N=200000+77;
int read()
{
int ans=0;char t=getchar();
while(t<'0'||t>'9') t=getchar();
while(t>='0'&&t<='9') ans=ans*10+t-'0',t=getchar();
return ans;
}
inline int ma(int a,int b,int c)
{
int p=a>b?a:b;
return p>c?p:c;
}
struct node
{
int l,r;
int left,right;
int max,min;
}e[N*4];
inline void pushup(int ro)
{
int ll=ro<<1,rr=ll+1;
e[ro].max=std::max(e[ll].max,e[rr].max);
e[ro].min=std::min(e[ll].min,e[rr].min);
e[ro].left=ma(e[ll].left,e[rr].left,e[rr].max-e[ll].min);
e[ro].right=ma(e[ll].right,e[rr].right,e[ll].max-e[rr].min);
}
void build(int ro,int l,int r)
{
e[ro].l=l;e[ro].r=r;
if(l==r)
{
e[ro].min=e[ro].max=read();
e[ro].left=e[ro].right=0;
return;
}
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1^1,mid+1,r);
pushup(ro);
}
node query1(int ro,int l,int r)
{
if(l<=e[ro].l&&e[ro].r<=r)
{
return e[ro];
}
int mid=(e[ro].l+e[ro].r)>>1;
node cnt,la,rb;
if(l>mid)
{
la=query1(ro<<1^1,l,r);
return la;
}
else if(r<=mid)
{
rb=query1(ro<<1,l,r);
return rb;
}
la=query1(ro<<1,l,mid);
rb=query1(ro<<1^1,mid+1,r);
cnt.max=std::max(la.max,rb.max);
cnt.min=std::min(la.min,rb.min);
cnt.left=ma(la.left,rb.left,rb.max-la.min);
cnt.right=ma(la.right,rb.right,la.max-rb.min);
return cnt;
}
int main()
{
int n;
scanf("%d",&n);
build(1,1,n);
int m,x,y;
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d %d",&x,&y);
if(x<y)
{
node cnt=query1(1,x,y);
printf("%d\n",cnt.left);
}
else
{
node cnt=query1(1,y,x);
printf("%d\n",cnt.right);
}
}
return 0;
}