线性求逆元

给定质数p,求出1至p-1的逆元

i-1 ≡ -[p/i]*(p%i)-1

证明:

i*[p/i]+p%i ≡ 0

-i*[p/i] ≡ p%i

i*(-[p/i]*(p%i)-1) ≡ 1

#include<cstdio>
#include<cstring>
const int N=3e6+7;
int inv[N];
int main()
{
	int n,p;
	scanf("%d %d",&n,&p);
	inv[1]=1;
	printf("1\n");
	for(int i=2;i<=n;i++)
	{
		inv[i]=-( (long long)(p/i)*inv[p%i]%p )+p;
		printf("%d\n",inv[i]);
	}
	return 0;
}

类似的,阶乘的逆元也可以线性求出

a*x=1(mod p)

我们从高位的阶乘递推到低位的

a/i*x*i=1(mod p)


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值