区域增长算法递归实现

原创 2006年05月31日 10:12:00

区域增长算法递归实现

void RegionGrowTwo(int nSeedX, int nSeedY, BYTE * pUnchInput,BYTE * D, int nWidth, int nHeight, BYTE * pUnRegion,int &iLeft,int & iRight,int & iTop,int & iBottom)
{
  int nDx[] = {-1,1,0,0};
 int nDy[] = {0,0,-1,1};  
 int k=0;
 int nCurrX ;
 int nCurrY ;
 int xx=0,yy=0;
 nCurrX = nSeedX;
 nCurrY = nSeedY;
 if(nCurrX<iLeft)
  iLeft = nCurrX;
 if(nCurrX>iRight)
  iRight = nCurrX;
 if(nCurrY<iTop)
  iTop = nCurrY;
 if(nCurrY>iBottom)
  iBottom = nCurrY;
 
//  pUnRegion[nCurrY*nWidth+nCurrX] = 255 ;
     // 对当前点的4邻域进行遍历
     int times = 0;
  for (k=0; k<4; k++)
  {
   // 4邻域象素的坐标
   xx = nCurrX+nDx[k];
   yy = nCurrY+nDy[k];

   // 判断象素(xx,yy) 是否在图像内部
   // 判断象素(xx,yy) 是否已经处理过
   // pUnRegion[yy*nWidth+xx]==0 表示还没有处理

   // 生长条件:判断象素(xx,yy)和当前象素(nCurrX,nCurrY) 象素值差的绝对值
   if ( (xx < nWidth) && (xx>=0) && (yy>=0) && (yy<nHeight)
   && (pUnRegion[yy*nWidth+xx]==0) && (pUnchInput[yy*nWidth+xx]==1))
   {
    // 同时也表明该象素处理过
    pUnRegion[yy*nWidth+xx] = 255 ;
    if(xx<iLeft)
     iLeft = xx;
    if(xx>iRight)
     iRight = xx;
    if(yy<iTop)
     iTop = yy;
    if(yy>iBottom)
     iBottom = yy;
                
    RegionGrowTwo(xx,yy,pUnchInput,D,nWidth,nHeight,pUnRegion,iLeft,iRight,iTop,iBottom);  
   }
   else
    times++;
  }

}

/*
*  区域增长,递归实现
* S,源图象
  D,目标图象
 ImageWidth,ImageHeight,表示图象的宽、高
*/
void  RegionGrowOne(BYTE *S,BYTE *D,int ImageWidth,int ImageHeight)
{
 int iLeft=0,iRight=0,iTop=0,iBottom=0;
 int k1,k2,k3,k4,ii1=0,off=0;
 int i=0,j=0;
 LPBYTE lpFlag = new BYTE[ImageWidth*ImageHeight];
 memset(lpFlag,0,ImageWidth*ImageHeight);
 memcpy(D,S,ImageWidth*ImageHeight);
 for (i=0; i<ImageHeight; i++)
 {
  for (j=0; j<ImageWidth; j++)
  {
   if (S[i*ImageWidth+j] == 1 && lpFlag[i*ImageWidth+j] == 0)
   {
    iLeft=65535,iRight=0,iTop=65535,iBottom=0;
    RegionGrowTwo(j,i,S,D,ImageWidth,ImageHeight,lpFlag,iLeft,iRight,iTop,iBottom);
    if((iRight-iLeft)>40 && (iBottom-iTop)>40)  //表示区域大于40*40时就画出边框
    {
     //画边框
     k1 = (iLeft -1 )<0 ?0:(iLeft -1 );
     k2 = (iRight+1)>=ImageWidth?(ImageWidth-1):(iRight+1);
     k3 = (iTop-1)<0?0:(iTop-1);
     k4 = (iBottom+1)>=ImageHeight?(ImageHeight-1):(iBottom+1);
     for(ii1 = k1;ii1 <= k2;ii1++)
     {
      off = ii1 + k3*ImageWidth;
      D[off] = 11;
      off = ii1 + k4*ImageWidth;
      D[off] = 11;
     }
     for(ii1 = k3 ;ii1<=k4;ii1++)
     {
      off = ii1 * ImageWidth + k1;
      D[off] = 11;
      off = ii1 * ImageWidth + k2;
      D[off] = 11;
     }
     /////////////////////////////////////////////////
    }
   }
  }
 
 }

 if(lpFlag!=NULL)
 {
  delete []lpFlag;
  lpFlag = NULL;
 }

}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

多边形区域填充算法--递归种子填充算法

http://blog.csdn.net/orbit/article/details/7323090        平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的...
  • ymqq1
  • ymqq1
  • 2013-05-10 18:09
  • 1301

多边形区域填充算法--递归种子填充算法

注意:读者若是对下面的种子填充算法还不是很了解的话,可以观看维基百科中的动画,可以有更加直观的认识! 平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的边界(也可以是没有...

算法系列之十二:多边形区域填充算法--递归种子填充算法

平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的边界(也可以是没有边界,只是给出指定颜色),要求将边界范围内的所有象素单元都修改成指定的颜色(也可能是图案填充)。区域填充...

算法系列之十二:多边形区域填充算法--递归种子填充算法

平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的边界(也可以是没有边界,只是给出指定颜色),要求将边界范围内的所有象素单元都修改成指定的颜色(也可能是图案填充)。区域填充...
  • orbit
  • orbit
  • 2012-03-06 00:10
  • 42434

递归和分治策略算法实现

  • 2013-03-13 22:17
  • 1.06MB
  • 下载

C++递归递推算法之三角形划分平面区域

三角形划分平面区域 Description 1个三角形将平面划分成内、外 2 个区域。2 个三角形最多将平面划分成 8个区域,如下图所示。 给定三角形数量 n,求 n 个三角形最...

三角形划分平面区域【递归/递推】

简析法一:这类题目一般来说是找规律,找出递推式,找递推式有以下两种方 ①直接找规律(这个要数感好),对于这一道题保险一点将第四幅图画出来,得38个(这个要手不残)——不过这个来得简单粗暴,有经验的话...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)