学习岂有无痛之理

原创 2006年05月27日 09:52:00

的一代永远会埋怨新的一代在学习上过于燥进,新的一代拥有更多的管道、更多的媒介更多的资源来学习,旧的一代总是责成新的一代不懂得善用这些他们 过去所没有的资源,能够怪他们吗?

人类的创造活动随着创造工具的越来越方便,创造者的角色已经从一些特定的人转移至每个人的身上,从几个例子中可以看到,出版曾经是一些人的特权,而 今日工具的方便与媒介的普及,使得更多的人也能够投入出版的领域,也更能将自身的想法创造为实体的文字,发行至世界的各个角落;同样的事情发生在各个领 域,绘画的概念从生硬的画笔转为数字的编辑,更多的人得以呈现脑中的形象;数字摄像、摄影的低成本学习,使得越来越多的人开始得以随时捕捉身边的景物。

创造工具的易用使得越来越多的人能够投入创造,这些人创造出更多的知识,而知识又带领更多的人创造出更易用的工具,结果是使得创造活动以越来越高的 倍数成长,从而知识也以爆炸性的速度膨胀。相对于旧的一代而言,生活在新的一代是幸福的,也是不幸的。幸福的是创造是如此的易于实现,而所需的知识与信息 更是随手可得,不幸的是,身边的知识与信息过于丰富,学习的速度永远跟不上信息成长的速度。

由于身边的信息过于丰富,燥进的心态也就产生,因为身边总是充满着已经获取知识的人,从而使得新的学习者以为学习是容易的,而为了满足这些学习者的 燥进欲望,商业的知识供应者总是标榜着速成、无痛、不需成本等标语来推销他们所推荐的学习媒介与管道。虽然学习确实是有不同的管道,但只有适用不适用于个 体、学习方向的正确与不正确等议题,但绝对没有速成、无痛、不需成本等标语的存在,学习者往往只看到推荐的标语,从而接受了这样的学习价值观。

学习绝对是要付出成本的,这一点并不会因为有了新的工具而改变,学习是一种寻求方向、探索管道、取得媒介与吸收知识的过程,这个过程是必须花费时间 与心力的,就外在的工具而言,它们确实是节省了时间的花费,然而就内在的心力而言,并没有任何的帮助,新的一代根本搞不清楚这一点,他们所看到的只是标 语,甚至连时间都不愿意花费,更别说心力了,旧的一代所责怪的其实正是这点。要知道的是,学习不会是无痛的,多少的心力、多少的时间付出,甚至实质的金钱 花费,多少次的失望、无望之后重新面对,学习的喜悦是有的,但绝对是相对的付出代价而换来的。

当我们往前仰望大师的遥远背影时,我们总是期望有那么一个快捷方式能够赶上他们,但事实上并不存在这个快捷方式,大师们所花费的时间是我们所尚未付出的、他 们所花费的精神是我们尚未投入的、中间所历经的苦恼是我们未曾体会的、而所得到的经验在他们愿意转换为知识之前,更是我们所无法拥有的,我们所看到的只是 他们的背影所显现出的光辉,却无法看到他们往前看时所面对的迷雾,我们所走的只是他们开拓过的大道,而不是他们正在努力开拓的道路。

Java_JDK_学习笔记(林信良).pdf

  • 2011年09月25日 21:55
  • 8.31MB
  • 下载

java学习笔记林信良完整版

  • 2013年12月02日 14:22
  • 4.5MB
  • 下载

无痛的机器学习第一季目录

首发于 无痛的机器学习 关注专栏 写文章 无痛的机器学习第一季目录 经过5个月的努力,我终于完成了40篇不高不低还算有些干...
  • uncle_ll
  • uncle_ll
  • 2016年11月29日 09:55
  • 476

台湾大学林轩田教授机器学习基石课程理解及python实现----PLA

最近在班主任的带领下,开始观看台湾大学林轩田教授的机器学习基石课程,虽然吧,台湾人,汉语说得蛮6,但是还是听着怪怪的,不过内容非常值得刚刚入门的机器学习小白学习,话不多说,直接进入正题。 1.基本介绍...
  • qq_30537063
  • qq_30537063
  • 2016年07月11日 15:16
  • 5111

台湾大学林轩田机器学习技法课程学习笔记1 -- Linear Support Vector Machine

关于台湾大学林轩田老师的《机器学习基石》课程,我们已经总结了16节课的笔记。这里附上基石第一节课的博客地址:台湾大学林轩田机器学习基石课程学习笔记1 – The Learning Problem本系列...
  • red_stone1
  • red_stone1
  • 2017年06月21日 17:11
  • 3928

台大林轩田老师关于coursera机器学习课程的声明

台大林轩田老师关于coursera机器学习课程的声明  转载 以下是声明全文: Coursera 在七月一號起,關閉了舊平台上的所有課程,包括我們的「機器學習基石」與「機器學習技法」。關掉一週...
  • sinat_26251685
  • sinat_26251685
  • 2017年03月27日 10:51
  • 1004

台湾大学林轩田老师机器学习基石:内容简介

第一周:ML简介、ML与DM/AI/Statistics的区别 第二周:perceptron线性分类器 第三周:从输入特征、输出空间、label状况、学习方式四方面对ML进行分类 第四周:PAC学习原...
  • mmc2015
  • mmc2015
  • 2016年02月18日 23:41
  • 1937

一个机器学习博士生的忠告

一个机器学习博士生的忠告 纯属转载,有参考价值,更要共勉!  知乎原文 题主似乎没有明确自己是博士生,以下假设为博士生。 1、首先,请以一个局外人的理智角度,对你的导师进行如下...
  • zdy0_2004
  • zdy0_2004
  • 2015年03月14日 01:04
  • 17900

台湾大学林轩田机器学习基石课程学习笔记4 -- Feasibility of Learning

上节课,我们主要介绍了根据不同的设定,机器学习可以分为不同的类型。其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题。本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器...
  • red_stone1
  • red_stone1
  • 2017年05月02日 16:38
  • 2366

台大林轩田·机器学习技法记要

台大林轩田·机器学习技法 记要6/1/2016 7:42:34 PM 第一讲 线性SVM 广义的SVM,其实就是二次规划问题把SVM问题对应到二次规划...
  • qiusuoxiaozi
  • qiusuoxiaozi
  • 2016年06月25日 18:42
  • 7020
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:学习岂有无痛之理
举报原因:
原因补充:

(最多只允许输入30个字)