自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2058)
  • 收藏
  • 关注

原创 数模应用-MATLAB基础知识精讲系列文章目录介绍(持续补充ing)

本专栏以MATLAB基础知识讲解为主,相信有很多刚入门的理工科小伙伴,对于MATLAB这个软件还不是很熟悉,在这里给各位学弟学妹们一个小建议:大学期间数模竞赛如果有机会尽量去参加,一方面是对自己所学知识的一次检验,另外,如果能在比赛中获得好名次的话,对你之后的求职升学等方面都会有很大助力!本专栏的进阶版参见博主的这个专栏,里面详细列举了各类算法的算法原理、应用案例及多种编程语言的代码实现,配合基础篇一起学习能达到事半功倍的效果哦。

2022-10-08 09:03:23 883

原创 数学建模-MATLAB算法精讲系列文章目录介绍(持续补充ing)

结合实际案例,从算法背景开始一步步到最终代码实现,本系列文章主要以matlab代码为主,为照顾学习其他编程语言的小伙伴,大部分算法会附带python、Java、C++、R语言等市面上主流代码,满足各层面的用户学习。部分内容参见网络文献,如有侵权,请联系博主删除本专栏中涉及的MATLAB基础知识讲解篇详见文章内容主要包括算法背景、算法原理、算法优缺点、算法伪代码、算法的应用场景、算法的应用案例、算法的拓展以及多语言实现算法的代码化。

2022-08-30 09:26:54 2802

原创 目标检测YOLO实战应用案例100讲-面向驾校场景带深度信息目标检测(下)

本章将对目标检测算法部分展开深入研究,重点选择并改进了目前在各种开发 板上速度与精度都表现优异的一阶段目标检测算法SSD。改进分为两个主要部分, 一是对神经网络部分加入了现场画面进行域适应训练,以及对于计算量的优化设 计,从神经网络部分提升目标检测的精度和推理速度。二是将目标检测算法检测出 的目标送入ECO跟踪算法中,在短时间内快速预测其目标在下一帧的位置信息, 以便优化目标检测的实时性。同时,由于跟踪过程中对目标检测具有连续性,因此 该方式在目标检测算法的漏检问题上也有一定的缓解。

2025-06-11 00:30:00 8

原创 目标检测YOLO实战应用案例100讲-面向驾校场景带深度信息目标检测(中)

由相机成像原理中可知,相机所成图像会在转换过程中丢失掉世界真实目标 的深度信息,即距离信息。所以目前在单个普通相机摄像头的条件下,一般为利用 多视角下图像中的匹配目标来获取相机的转换矩阵参数或者使用不同视角下目标 坐标转换矩阵,将目标的像素点坐标转化为三维坐标或者转换成特殊视角下的坐 标如俯视视角。从而获取距离信息,如图3-1所示。

2025-06-10 00:30:00 12

原创 目标检测YOLO实战应用案例100讲-面向驾校场景带深度信息目标检测

本章将对测距与目标检测及跟踪相关算法的基本原理与概念加以阐述,首先 介绍测距算法中相机的成像原理,以及运动结构恢复算法SFM(Structrue From Motion)的原理以及卡尔曼滤波原理。其次是,对SSD上目标检测框的生成原理 进行介绍,域适应方法概念的介绍以及ECO跟踪算法的概述。目标检测算法主要有两种方式的检测方法,其一是精度较低但速度较快的一阶 段目标检测计算,其二是准确性较高而速率缓慢的二阶段目标检测计算。

2025-06-08 00:30:00 41

原创 MATLAB算法实战应用案例精讲-【数模应用】DCA曲线(附MATLAB、python和R语言代码实现)

​决策曲线分析法(Decision Curve Analysis,DCA)可对风险和获益情况进行综合评估,以判断临床决策是否可行,通俗地讲即DCA曲线可辅助临床医生判断临床决策是否会‘利大于弊’。

2025-06-07 00:30:00 69

原创 MATLAB基础应用精讲-【数模应用】校准曲线(附MATLAB、python和R语言代码实现)

校准曲线是用于描述待测物质的浓度或量与相应的测量仪器的响应量或其他指示量之间定量关系的曲线,包括工作曲线和标准曲线。如果基体效应对分析方法至关重要时,应使用含有与实际样品类似基体的标准溶液系列进行校准曲线的绘制。通常,一条校准曲线须配制包括零浓度在内六个以上的标准系列浓度点的信号值。用扣除空白信号值的数据为纵坐标,浓度(或含量)为横坐标,在坐标纸上植点,即为散点图,通过各点绘出一条与各点距离最小的直线,即可得出校准曲线图。在得到满足要求的散点图后,进行线性回归处理,得曲线y=bx+a。

2025-06-04 00:30:00 69

原创 MATLAB算法实战应用案例精讲-【数模应用】校准曲线(附MATLAB、python和R语言代码实现)

模型校准曲线(Calibration Curve),也称为可靠性曲线(Reliability Curve)或概率校准曲线(Probability Calibration Curve),是一种评估分类模型输出概率准确性的图形工具。它可以帮助我们理解模型的预测概率是否与实际标签的分布一致。校准曲线通常包括以下步骤:计算模型预测概率:对于测试集中的每个样本,模型会输出一个概率值,表示样本属于正类的概率。将数据分桶:将这些概率值分成若干个等宽的桶(例如10个桶),每个桶中的样本具有相似的预测概率。

2025-06-03 00:30:00 58

原创 MATLAB算法实战应用案例精讲-【数模应用】NRI和IDI指标(附MATLAB、python和R语言代码实现)

净重新分类指数(NRI)和综合判别改善指数(IDI)是用于评估新的预测模型相对于基准模型的改进程度的指标,通常用于逻辑回归模型的评估。净重新分类指数(NRI):NRI是一种指标,用于衡量新的预测模型相对于基准模型在重新分类中的改进程度。NRI的计算基于模型对事件和非事件的分类情况,通过比较新模型和基准模型的分类结果,可以评估新模型相对于基准模型的准确性改进情况。综合判别改善指数(IDI):IDI是另一种用于评估新模型相对于基准模型改进程度的指标。

2025-06-02 00:30:00 78

原创 MATLAB基础应用精讲-【数模应用】Fisher卡方(附MATLAB、python和R语言代码实现)

适合较大样本且期望频数较高的情况下使用。

2025-06-01 00:30:00 77

原创 MATLAB基础应用精讲-【数模应用】Deming 回归(附MATLAB、python和R语言代码实现)

使用正交回归(也叫 Deming 回归)可以确定两种仪器或两种方法能否提供相似的测量结果。正交回归检查两个连续变量(一个响应变量 (Y) 和一个预测变量 (X))之间的线性关系。与简单线性回归(最小二乘回归)不同,正交回归中的响应和预测变量均包含测量误差。在简单回归中,只有响应变量包含测量误差。当这两个变量包含测量误差时,如果您使用简单回归确定可比较性,则结果取决于计算过程假设哪个变量没有测量误差。正交回归解决了此问题,因此,变量的角色对结果的影响很小。

2025-05-31 00:30:00 91

原创 MATLAB基础应用精讲-【大模型】模型上下文协议MCP(二)

是一个开放协议,旨在实现 LLM 应用与外部数据源和工具之间的无缝集成。无论您是构建 AI 驱动的 IDE、增强聊天界面,还是创建自定义 AI 工作流,MCP 都提供了一种标准化的方式来连接 LLM 与外部世界。简单来说,MCP 是一种客户端-服务器架构的协议,允许 LLM 应用程序(如 Claude、各种 IDE 等)通过标准化的接口访问外部数据和功能。这解决了 LLM 在实际应用中常见的一些痛点:LLM 无法直接访问实时数据(如天气、股票行情等)

2025-05-27 00:30:00 81

原创 MATLAB算法实战应用案例精讲-【大模型】模型上下文协议MCP(二)

MCP,全称为Model Context Protocol,即模型上下文协议。它诞生于2024年11月25日,由Anthropic正式发布。简单来说,MCP就是AI世界里的“通用语言”和“标准接口”。想象一下,在AI应用开发过程中,我们常常需要将各种数据源(如本地文件、数据库)、工具(数据分析工具、文件处理工具等)与AI模型连接起来。但此前,不同的连接方式缺乏统一标准,就像不同形状的插头无法通用。而MCP的出现,定义了应用程序和AI模型之间交换上下文信息的标准方式,成为了一个中间协议层。

2025-05-26 00:30:00 89

原创 MATLAB基础应用精讲-【大模型】模型上下文协议MCP

MCP和Function Calling在大语言模型(LLM)与外部工具或数据源交互方面各有优势。MCP作为一种开放标准协议,提供了统一的接口和流程,支持工具发现、调用执行、统一接口、双向通信和上下文管理,适用于复杂场景下的多工具协调与上下文管理。而Function Calling则作为模型内部的功能扩展,是LLM的一种能力,允许模型根据用户输入生成结构化的函数调用指令,从而与外部工具或API交互。Function Calling能够快速实现简单场景下的函数调用任务。

2025-05-25 00:30:00 92

原创 MATLAB算法实战应用案例精讲-【大模型】模型上下文协议MCP

MCP(Multimodal Context and Tool Use Protocol),即「多模态上下文与工具使用协议」,是 Anthropic 为 Claude 系列模型设计的一套统一、结构化的工具调用和上下文管理标准。从字面上看,它像是 function calling 的升级版,但本质上,它意图解决三个核心痛点:工具调用格式碎片化,难以跨模型复用上下文数据缺乏结构化描述,模型理解能力受限Agent 系统调用链路复杂,难以维护与扩展。

2025-05-24 00:30:00 107

原创 MATLAB基础应用精讲-【数模应用】多层线性模型HLM(附MATLAB、python和R语言代码实现)

层次线性模型(HLM),也称为分层线性模型或多水平线性模型,是一种多元统计分析方法,适用于处理具有层次结构的数据。HLM能够同时考虑同一层次和不同层次间的数据变异,解决了传统回归模型在处理嵌套数据时随机误差独立性假设难以满足的问题。HLM通过将误差分解为个体间和群体间的差异,提供了更准确的标准误估计和更有效的区间估计。在教育、心理学等领域,HLM被广泛应用于分析不同层次变量对因变量的影响,如学校环境对学生成绩的影响。HLM的优点包括能够分析多水平协方差、探讨不同层次对因变量的影响程度、以及分析重复测量数据等

2025-05-21 00:30:00 146

原创 目标检测YOLO实战应用案例100讲-基于残差注意力和多特征融合的显著目标检测(下)

本文提出了一种名为GCRANet的RGB图像显著目标检测算法,并与15种先进算法进行了定性和定量对比。定性分析显示,GCRANet在各种复杂场景下均能有效突出显著目标并抑制背景噪声。定量分析表明,GCRANet在PR曲线、F-Measure值、S-Measure值和MAE值等指标上均优于对比算法,尤其在F-Measure值上表现突出。此外,GCRANet的检测速度达到29FPS,仅次于RANet和POOLNet,但在检测精度上显著优于RANet。总体而言,GCRANet在显著目标检测任务中表现出色,具有较高

2025-05-20 00:30:00 106

原创 目标检测YOLO实战应用案例100讲-基于残差注意力和多特征融合的显著目标检测(中)

本文探讨了空间和通道注意力机制的融合及其在显著目标检测中的应用。空间注意力机制关注图像的空间信息,而通道注意力机制则聚焦于通道信息。通过融合这两种机制,如卷积块注意力模型(CBAM),可以提升网络在通道和空间维度上的特征提取能力。本文设计了一个残差注意力模块,结合了空间和通道注意力,以处理不同分辨率和通道数的特征。此外,文章还讨论了多特征融合策略,通过融合不同层次的特征(如高层语义信息和低层细节信息)来提高显著目标检测的性能。在RGB-D显著目标检测中,文章提出了前期、后期和多尺度融合策略,以有效融合RGB

2025-05-18 00:30:00 130

原创 目标检测YOLO实战应用案例100讲-基于残差注意力和多特征融合的显著目标检测

随着互联网和人工智能的快速发展,图像和视频处理在计算机视觉领域的重要性日益增加。显著目标检测作为模拟人类视觉机制的技术,能够识别并精确分割图像中最引人注目的目标区域,对高级计算机视觉任务如语义分割、图像检索、目标跟踪等具有重要应用价值。文章详细介绍了显著目标检测的两个主要阶段:显著前景目标的检测和精确区域的分割,并探讨了该技术在工业、医学和日常生活等领域的广泛应用。此外,文章还讨论了RGB和RGB-D图像在显著目标检测中的应用,以及深度学习技术在此领域的进展和挑战。最后,提出了两种新

2025-05-16 00:30:00 134 1

原创 MATLAB算法实战应用案例精讲-【深度学习】基于多尺度特征增强网络的高分辨遥感影像水体提取(续)

高分辨率遥感影像中,水体时空分布多样、形状、颜色、纹理等特征差异明显,呈现多尺度,水体与背景的边缘纹理特征、细节信息丰富,特别是在具有跨地域场景、分辨率以及传感器的数据集中,准确、高效的水体提取难度高。为获得丰富的局部和全局上下文信息,抑制背景噪声,增强目标特征。本研究提出一种以非自适应方式聚合高阶语义信息的模块——上下文特征提取模块 (Context Feature Extractor Module, CFEM) ,由。

2025-05-14 00:30:00 111

原创 目标检测YOLO实战应用案例100讲-面向复杂场景的运动目标检测与跟踪(续)

为验证本文改进算法的可行性,本文在完成公共视频测试集的仿真实验之后进行机器人目标检测实验。以仿人机器人NAO作为硬件平台,如图2-13所示。NAO机器人拥有额头处和下颌处两个摄像机镜头,分别用于远景和近景的采集,两个摄像头不可以 同时启动。本文采用机器人额头处的单目摄像头作为视觉传感器获取运动目标及场景相关信息,并确保运动目标出现在机器人视野内。通过PC端实时接收机器人NAOqi系统 中的ALVideoDevice视频图像传输模块所采集的视频数据,然后运用检测算法获取机器人视野中的运动目标。

2025-05-13 00:30:00 170

原创 目标检测YOLO实战应用案例100讲-无人驾驶视觉环境感知目标检测与分割(续)

为了评估网络对交通目标检测性能,在本节使用BDD100K数据集[34]作为训练集 和验证集。BDD100K数据集是用于无人驾驶研究的开源数据集,是目前无人驾驶领 域公开的最大规模、标签种类最多、信息最丰富的数据集,它包含了10万个视频数 据,涵盖了无人驾驶方向的10个任务,标签涵盖了目标检测、车道线标记、驾驶区 域、视频跟踪等,并且数据中包含了GPS、IMU等信息,涵盖了雨雪、夜晚、白天等 各种天气和时间的路况情景。

2025-05-12 00:30:00 149

原创 MATLAB算法实战应用案例精讲-【深度学习】煤泥浮选泡沫图像增强与多尺度特征提取 研究(续)

当𝑡是最佳阈值时,那么可以从熵的角度来看,熵在 0 和 1 时取值最小,而 在 0.5 时取值最大。很显然的这里的取值可以是模糊度,当模糊都在 0 和 1 时,6(a) 、 (b) 和 (c) 分别对应大尺寸泡沫,中等尺寸泡沫和小尺寸泡沫 3 种工况。(3)对 𝑅 1 中像素灰度值的平均值命名为 𝜇 1 ,对 𝑅 2 中的像素灰度值的平均值。件中,我们使用的与分割算法对应的最终结果统计函数是 Bwlabel。(4)寻找直方图中的最大值 dmax , maxidx 是峰值对应的灰度值, max 是。

2025-05-12 00:30:00 229

原创 目标检测YOLO实战应用案例100讲-无人驾驶视觉环境感知目标检测与分割

深度学习作为机器学习的一部分,经历了一段时间的发展,现在已经成为研究热 门和趋势,其在计算机视觉领域的应用取得了显著的成绩。本章主要介绍深度学习的 基础理论和常用的卷积神经网络CNN(Convolution Neural Network),为无人驾驶视 觉感知系统的实现奠定理论基础。

2025-05-10 00:30:00 349

原创 MATLAB算法实战应用案例精讲-【深度学习】煤泥浮选泡沫图像增强与多尺度特征提取 研究

浮选又称为浮游选矿,是应用最广、效果最好的一种分选细粒物料的选矿方法。由于物料粒度细,粒度和密度作用极小,根据物料表面物理化学性质的差异,即它们对水、气泡、药剂的作用不同,通过药剂和机械调节,可以通过浮选高效分离出有用矿物和无用的脉石矿物 [5]。当前浮选气泡沫图像拍摄系统只能获取到彩色的 RGB 图像,而本文采用的方法是基于灰度图像进行处理的,因此本章最后要介绍色彩空间及图像灰度化处理相关基础理论。

2025-05-10 00:30:00 228

原创 MATLAB算法实战应用案例精讲-【深度学习】基于多尺度特征增强网络的高分辨遥感影像水体提取

得,空间分辨率为 1.0 米,影像大小为 27648  19456 像素,比例尺 (72DPI) 为 1:2838 ,正向传播过程中,输入影像依次经过四次编码,特征图以 {1/2 , 1/4 , 1/8 ,编码过程中,特征图尺寸以 {1/2 , 1/4 , 1/8 , 1/16} 比例减半,编码层中的池化操作,容易。(http://sasclouds.com/chinese/home/) ,影像具体信息见表 2-2。( 1 ) DeepGlobe 数据集,数据标注精度一般,非水体类别高,样本类别不平衡;

2025-05-09 00:30:00 87

原创 目标检测YOLO实战应用案例100讲-面向复杂场景的运动目标检测与跟踪

计算机视觉[1-4]作为一门包括图像处理、机器学习、模式识别等辅助领域在内的综合 性学科,其主要目的是由摄像机、摄像头、计算机等视频图像采集设备获取场景中的信 息,然后将这些信息转换为数字信号的形式进行下一步处理,并将其呈现为更加容易被 人理解的形式。计算机视觉作为获取周围环境中相关信息的关键技术,近年来引起了国 内外众多学者的关注。

2025-05-08 00:30:00 153

原创 目标检测YOLO实战应用案例100讲-基于深度学习的船舶目标检测与跟踪算法(续)

可以看出,从第699帧开始,渔船1逐渐被客船2 遮挡,直至完全遮挡,在第1036帧,被遮挡的渔船1重新出现,ID变为3,此时客船4 逐渐驶离岸边,从第1036帧到第1592帧,客船2和渔船3相继离开视野,之后,客船4 继续驶向对岸。在视频2中,仅因为渔船被长时间遮挡发生了1次ID切换,其余过程均 跟踪正常,在客船2靠岸的过程以及客船4离岸并驶向对岸的过程中,船舶因转向发生了严重的形变,但均能够被改进中心点算法正确检测,因此,中心点检测算法的引入大幅提 升了跟踪算法的跟踪准确率。

2025-05-06 00:30:00 154

原创 目标检测YOLO实战应用案例100讲- 无人机平台下露天目标检测与计数(续)

在上一章中,介绍了基于深度学习的目标检测与计数方法,本文对目标检测与计数任 务采取了先检测后计数的步骤,由于通用的目标检测算法在特征学习过程中产生了多次下 采样,在下采样过程中容易造成小目标特征丢失,导致小目标检测精度不高,对于无人机 视角下的目标检测表现并不优秀。为此本章设计了基于改进YOLO v4算法的露天目标检测 模型。

2025-05-04 00:30:00 158

原创 目标检测YOLO实战应用案例100讲-基于多级特征融合的小目标深度检测网络(续)

知识拓展6.2.3主干网络对比分析汇总上述有效的改进方案,我们最终构建了完整的特征融合加强的主干网络SFEDNet。为了从精度与速度方面分析改进的综合效果,本节将从主干网络整体的角度,进行SFEDNet与其他主流主干网络之间的对比实验。这里依然以一阶段检测算法YOLOv3为框架,通过主干网络的替换得到不同的检测算法,以其在小目标任务上的表现来评价对应主干网络的性能。由表6.3的对比分析可知,我们的SFEDNet主干网络在所有的精度指标上都取得了最高,这表明了TDL。

2025-05-04 00:30:00 177

原创 目标检测YOLO实战应用案例100讲-基于深度学习的船舶目标检测与跟踪算法

中国海岸线漫长,国土面积巨大,具有得天独厚的内河以及海洋航运条件,为能源运 输、进出口贸易发展提供了便利。随着社会经济快速发展,以长江、珠江、淮河等水系为 主体,我国内河航运建设与发展取得了显著成效,港航基础设施和运输规模位居世界前列, 已成为综合运输体系的重要组成部分[1]。2020年交通运输部在《内河航运发展纲要》中 指出,未来15年里,将继续开发千吨级内河航道,增加内河运输货物周转量,缩短重要 航道和港口应急时间,增加投入使用新能源和清洁能源船,并使用人工智能技术促进内河 航运信息化发展。

2025-05-02 00:30:00 188

原创 目标检测YOLO实战应用案例100讲-基于多级特征融合的小目标深度检测网络

具有重要的应用价值,受到了人们越来越多的关注,其对于检测算法提出的主要包括如下两。的特征信息进行检测,这种设计缺少对浅层信息的融合,导致其在小目标检测方面性能不佳。的不同作用,验证小目标检测算法进行多级特征融合的必要性,同时针对特征融合效果相对。较好的主干网络进行融合效率与检测性能的分析,并发现其在小目标检测任务中的问题,进。而提出针对性的特征融合策略改进方案,以突破当前小目标检测算法在特定任务场景下的技。种模块级的特征融合结构并应用于改进后的密集连接模块,构造浅层特征高效融合的小目标。

2025-04-30 09:03:38 470

原创 目标检测YOLO实战应用案例100讲- 无人机平台下露天目标检测与计数

无人机在一系列民用领域如农林植保、生产监控、地理测绘、治安巡查、应急救援等领 域应用广泛。随着硬件性能的不断提高,无人机和计算机视觉技术的联系日益紧密。与街道 固定的摄像头相比,无人机有着更强的灵活性,能够对任意范围的公共场所、工厂、道路交 通进行监控和侦查,而露天目标特别是人群和车辆的检测与计数是无人机在应急救援、生产 监控、治安巡查等领域的重要研究方向之一,具有重要的研究意义。

2025-04-28 14:27:23 344

原创 MATLAB基础应用精讲-【基础知识篇】发布和共享 MATLAB 代码

发布MATLAB® 代码文件 (.m) 可创建包括您的代码、注释和输出的格式化文档。发布代码的常见原因是与其他人共享文档以用于教学或演示,或者生成您代码的可读外部文档。

2025-04-26 00:30:00 304

原创 目标检测YOLO实战应用案例100讲- 基于深度学习的红外小目标检测关键算法研究(续)

上节阐述的共生滤波可以平滑纹理方面处理的更加优秀,同时清晰保留了纹理之间的边 界。本小节介绍基于金字塔共生特征架构的红外小目标检测算法,算法的整体框架如图3.2 所示。 首先,定义自适应结构元素。因为不同的结构元素对最终的平滑效果影响很大,而红外 小目标的所占像素相对于背景而言是很少的,所以结构元素的尺寸不易过大。考虑到本文所 使用的数据集中,小目标所在区域的长宽都不超过7个像素点,所以采用7×7的菱形结构元 素,结构元素如图3.3所示。图中标红的为结构元素中心位,通过这个结构元素对原图进行 遍历,获得当

2025-04-24 00:30:00 110

原创 MATLAB基础应用精讲-【数模应用】数字图像处理:去卷积 (附MATLAB和python代码实现)

卷积在图像处理的应用中一般是卷积滤波,即用一个卷积模板(卷积核/滤波器)去进行滤波,而傅里叶变换在信号处理中往往是变换时域和频域,在图像处理中便是空域和频域。图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。去卷积是卷积的逆运算,可以用来从卷积结果中还原原始信号。

2025-04-23 00:30:00 85

原创 MATLAB基础应用精讲-【基础知识篇】Matlab: 自动计算属性的默认值

当创建图形时,MATLAB® 会为这一特定图形适当设置某些属性值。这些属性,如控制坐标轴范围和图窗渲染器的属性,具有相关联的模式属性。这一模式属性确定MATLAB是否计算此属性值(模式为 auto)或属性是否使用指定值(模式为 manual)。通过以下方式控制属性定义的各个方面:分别为每个属性指定默认值,参考默认属性值。在类构造函数中为属性赋值,参考在构造函数中为属性赋值。用常量值定义属性,参考Named Value。按代码块为属性特性赋值,参考属性特性。

2025-04-22 00:30:00 43

原创 目标检测YOLO实战应用案例100讲- 基于深度学习的红外小目标检测关键算法研究

在信息社会以及计算机算力的快速发展下,对于数据处理的实时性和准确性要求也越来 越高。伴随着人工智能这一技术领域的出现,使得在一些特定场景下,计算机视觉可以承担 人类的部分视觉工作任务。计算机视觉的含义是使用计算机对生物视觉的一种模拟,更准确 的说,就是用摄像头代替人眼的部分工作,对待检测目标进行测量、识别和追踪等任务,并 使用计算机处理采集到的图像或视频信息,其最终目标就是使计算机能够像人脑一样具有观 察理解信息流的能力。

2025-04-21 00:30:00 135

原创 目标检测YOLO实战应用案例100讲- 基于深度学习的无人机小目标检测算法研究(续)

3.3.1实验平台搭建在算法训练过程中,网络的学习能力与效率,与相应参数的设置相关,而每 一次参数设置都伴随着百亿次的浮点数运算,因此每一次网络的训练都需要消耗大量的时间。本课题在64位的WINDOWS 10系统,选用tensorflow和darknet框 架训练网络模型,依赖的库有OpenCV3.5、numpy等,CPU为Intel(R)Xeon(R) CPU E5-2667 v4@3.2GHZ,GPU为NVIDIA Ge Force RTX 3090。

2025-04-20 00:30:00 143

原创 目标检测YOLO实战应用案例100讲- 基于深度学习的无人机小目标检测算法研究

随着科学技术与人工智能的不断发展,无人机的使用给人们的日常生活和工 作提供了巨大的便利。无人机凭借尺寸小、操作灵敏等优点,替代人类完成一些 危险或难度高的任务,例如森林防火、高压输电线路巡检、环境监测等。伴随着 无人机应用技术的发展,对于无人机应用技术人才的需求也逐渐增多。而当无人 机作业于复杂环境时,对于操作员飞行技术则需要严格的要求,因此相应地也会 在专业考核系统中对于操作员的飞行能力进行评估。目标检测主要从图像背景中分离出前景目标,在车辆检测、智能监控、电路 巡检等领域有着重要的应用。伴随着计算机图

2025-04-19 00:30:00 110

目标检测YOLO实战应用案例100讲-红外弱小目标检测:IPI算法MATLAB代码实现

目标检测YOLO实战应用案例100讲-红外弱小目标检测:IPI算法MATLAB代码实现

2024-05-10

目标检测YOLO实战应用案例100讲-红外弱小目标检测

目标检测YOLO实战应用案例100讲-红外弱小目标检测

2024-05-10

目标检测YOLO实战应用案例100讲-基于yolov6的遥感影像目标识别

目标检测YOLO实战应用案例100讲-基于yolov6的遥感影像目标识别

2024-04-25

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part1

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part1

2024-04-17

目标检测YOLO实战应用案例100讲-3D Lidar MOT 激光雷达点云 感知 多目标追踪

目标检测YOLO实战应用案例100讲-3D Lidar MOT 激光雷达点云 感知 多目标追踪

2024-04-19

目标检测YOLO实战应用案例100讲-激光雷达的3D目标检测

目标检测YOLO实战应用案例100讲-激光雷达的3D目标检测

2024-04-19

目标检测YOLO实战应用案例100讲-基于YOLOV3的显著性目标检测

目标检测YOLO实战应用案例100讲-基于YOLOV3的显著性目标检测

2024-04-18

目标检测YOLO实战应用案例100讲-基于yolo7的遥感目标检测

目标检测YOLO实战应用案例100讲-基于yolo7的遥感目标检测

2024-04-18

目标检测YOLO实战应用案例100讲-基于YOLOV5的深度学习卫星遥感图像检测与识别

目标检测YOLO实战应用案例100讲-基于YOLOV5的深度学习卫星遥感图像检测与识别

2024-04-18

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part2

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part2

2024-04-17

目标检测YOLO实战应用案例100讲-yolo7实现遥感目标检测

目标检测YOLO实战应用案例100讲-yolo7实现遥感目标检测

2024-04-16

目标检测YOLO实战应用案例100讲-YOLOV4+DeepSort车流量检测

目标检测YOLO实战应用案例100讲-YOLOV4+DeepSort车流量检测

2024-04-16

目标检测YOLO实战应用案例-基于动态神经网络的目标检测

目标检测YOLO实战应用案例-基于动态神经网络的目标检测

2024-04-15

目标检测YOLO实战应用案例-基于点云数据的3D目标检测与跟踪

目标检测YOLO实战应用案例-基于点云数据的3D目标检测与跟踪

2024-04-15

MATLAB算法实战应用案例精讲-图像处理-FPGA 上使用 SVM 进行图像处理

MATLAB算法实战应用案例精讲-图像处理-FPGA 上使用 SVM 进行图像处理

2024-04-10

MATLAB算法实战应用案例精讲-鹦鹉优化器(PO)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-鹦鹉优化器(PO)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-角蜥优化算法(HLOA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-角蜥优化算法(HLOA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-爱情进化算法(LEA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-爱情进化算法(LEA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-优化算法正切搜索算法(FTTA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-优化算法正切搜索算法(FTTA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-【智能优化算法】基于人类行为的优化算法(HBBO)(附MATLAB源代码)

MATLAB算法实战应用案例精讲-【智能优化算法】基于人类行为的优化算法(HBBO)(附MATLAB源代码)

2023-12-12

目标检测YOLO实战应用-海洋鱼类图像识别数据集

目标检测YOLO实战应用-海洋鱼类图像识别数据集

2025-06-05

目标检测YOLO实战应用-船舶航行轨迹预测数据集

目标检测YOLO实战应用-船舶航行轨迹预测数据集

2025-06-05

MATLAB算法实战应用案例精讲-【数模应用】-第十一届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十一届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB算法实战应用案例精讲-【数模应用】-第十三届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十三届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB算法实战应用案例精讲-【数模应用】-第十四届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十四届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB算法实战应用案例精讲-【数模应用】-第十二届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十二届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB基础应用精讲-数模应用DTMF信号分析与仿真(附MATLAB GUI源码)

MATLAB基础应用精讲-【数模应用】DTMF信号分析与仿真(附MATLAB GUI源码)

2025-02-05

MATLAB基础应用精讲-数模应用基于BP神经网络的交通流量预测(附数据及MATLAB源码)

MATLAB基础应用精讲-【数模应用】基于BP神经网络的交通流量预测(附数据及MATLAB源码)

2025-02-05

MATLAB基础应用精讲-【智能优化算法】黏菌算法(SMA)(附MATLAB和python代码实现)

黏菌优化算法(Slime Mould Algorithm, SMA)是一种新兴的自然启发式优化算法,其灵感来源于黏菌(Slime Mould)的觅食行为。黏菌是一种简单的单细胞生物,以其高效的资源分配和路径选择能力闻名。研究人员观察到黏菌在寻找食物的过程中,能够动态调整其形态结构,以最小化能量消耗并优化食物获取,这为优化问题的求解提供了新的思路。

2025-01-10

MATLAB基础应用精讲-数模应用不确定多式联运路径优化问题(附MATLAB多种算法代码实现)

使用AFO算法以及其他GA和PSO算法求解不确定多式联运路径优化问题。同时和MATLAB自带的全局优化搜索器进行对比。 直接运行main.m 需要matlab2021及以后版本。 考虑不确定性的模糊多式联运路径优化研究,可以在满足运输方案经济环保双重要求的同时,增强运输 方案的鲁棒性,提高企业的抗风险能力。本文建立了模糊需求和模糊运输时间下低碳低成本多式联运路径优化模 型,针对连续型元启发式算法无法直接求解离散型组合优化模型的问题,设计了基于优先级的通用编码方式;在 此基础上,为进一步提高算法的求解质量,提出了带启发式因子的特殊解码方式。

2025-01-08

MATLAB基础应用精讲-数模应用数字预失真(DPD)(MATLAB实现源码)

MATLAB基础应用精讲-数模应用数字预失真(DPD)(MATLAB实现源码)

2025-01-06

MATLAB基础应用精讲-数模应用基于PCM编码QAM调制与解调仿真(附MATLAB源代码)

MATLAB基础应用精讲-数模应用基于PCM编码QAM调制与解调仿真(附MATLAB源代码)

2024-12-20

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算GR算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算GR算法MATLAB源代码

2024-12-16

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算CA算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算CA算法MATLAB源代码

2024-12-16

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算Itti算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算Itti算法MATLAB源代码

2024-12-16

数学建模基础应用精讲-数模应用禁忌搜索算法求解旅行商问题(附数据和C++源代码实现)

数学建模基础应用精讲-数模应用禁忌搜索算法求解旅行商问题(附数据和C++源代码实现)

2024-12-05

MATLAB基础应用精讲-数模应用图像修复-Criminisi算法MATLAB代码

订阅【数模应用】MATLAB基础知识详讲300篇(持续更新中)专栏的可联系博主要代码,没订阅的请直接购买。

2024-11-21

2024年高教社杯全国大学生数学建模竞赛-完整赛题及数据

2024年高教社杯全国大学生数学建模竞赛-完整赛题及数据

2024-09-06

目标检测YOLO实战应用案例100讲-目标检测YOLOV9论文及源代码

目标检测YOLO实战应用案例100讲-目标检测YOLOV9论文及源代码

2024-05-21

目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测

目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测

2024-05-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除