- 博客(2173)
- 资源 (76)
- 收藏
- 关注
原创 数模应用-MATLAB基础知识精讲系列文章目录介绍(持续补充ing)
本专栏以MATLAB基础知识讲解为主,相信有很多刚入门的理工科小伙伴,对于MATLAB这个软件还不是很熟悉,在这里给各位学弟学妹们一个小建议:大学期间数模竞赛如果有机会尽量去参加,一方面是对自己所学知识的一次检验,另外,如果能在比赛中获得好名次的话,对你之后的求职升学等方面都会有很大助力!本专栏的进阶版参见博主的这个专栏,里面详细列举了各类算法的算法原理、应用案例及多种编程语言的代码实现,配合基础篇一起学习能达到事半功倍的效果哦。
2022-10-08 09:03:23
1014
原创 数学建模-MATLAB算法精讲系列文章目录介绍(持续补充ing)
结合实际案例,从算法背景开始一步步到最终代码实现,本系列文章主要以matlab代码为主,为照顾学习其他编程语言的小伙伴,大部分算法会附带python、Java、C++、R语言等市面上主流代码,满足各层面的用户学习。部分内容参见网络文献,如有侵权,请联系博主删除本专栏中涉及的MATLAB基础知识讲解篇详见文章内容主要包括算法背景、算法原理、算法优缺点、算法伪代码、算法的应用场景、算法的应用案例、算法的拓展以及多语言实现算法的代码化。
2022-08-30 09:26:54
3167
原创 算法基础应用精讲-【自动驾驶】ACC自适应巡航(三)
在自适应巡航系统出现之前,汽车上搭载的都是定速巡航系统CCS。普通的巡航定速对于现阶段汽车配置来说已经是常见的功能之一了,大多数车辆均可加装,而成本也不过几百元。定速巡航有一个明显劣势,就是该功能非常简单,只能将车速保持在驾驶员预先设定的数值上,只能提供相对恒定的驾驶速度,而不能根据实际路况对车辆的行驶状态进行调节或者给予必要的预警提示,缺乏对环境的应变能力。当车辆在高速公路上还可以应付,但在实际的道路中路况都是千变万化的,会遇到种种意外让驾驶员不得不取消定速。
2026-01-29 00:30:00
4
原创 数学建模算法案例精讲500篇-【自动驾驶】占用网络(Occ)
业界在实现自动驾驶的过程中,小样本目标的漏检误检问题,非立体的平面目标画像的误检问题等等,是传统算法无法解决的。其根因可以简单归纳几点:接近地平线的远景区域深度极度不一致问题传统的3D目标感知算法过于依赖数据集的类别标注,不常见的物体类别没被标注,从而导致无法被检测出来小样本目标问题:远距离目标的深度信息消失,或者超低分辨率很难决定一个目标区域的深度(例如图右桥墩漏检后导致致命性车辆撞击问题)遮挡问题、鬼影问题:不能穿透遮挡区域或者行驶车辆来识别被遮挡目标,遮挡目标长记忆轨迹预测困难。
2026-01-26 00:30:00
14
原创 算法基础应用精讲-【自动驾驶】ACC自适应巡航
车辆 Ready 后,首次无法通过上下拨杆进入ACC。除非探测到前方有车辆,否则必须在本车速度高于 15km/h 才能使用自适应巡航(ACC)。如果探测到前方有车辆,则可在任何车速下启动自适应巡航(ACC),即使静止状态也可以,但与前车的距离会至少为 2 米。最低设定速度为 30 km/h,最高设定速度为120 km/h。驾驶员有责任根据道路状况和车速限制设定安全的车速巡航。仪表板在行驶速度左侧显示灰色的车速表图标,表示可以使用自适应巡航(ACC),但尚未激活。
2026-01-24 00:30:00
24
原创 算法基础应用精讲-【自动驾驶】ACC自适应巡航(二)
ADAS (Advanced Driver Assistance System)作为一种高级驾驶辅助系统,其利用车载信息传感器获取道路目标信息并对车辆的行驶做出部分自动控制,以此减轻驾驶员的驾驶负担。此外,在主车即将发生碰撞或失稳危险而驾驶员未及时采取有效措施时,该系统可对主车进行自动安全控制,从而避免交通事故的发生或减小交通事故的伤害程度。ADAS包括AEB、ACC、LKA、BSD等功能。目前英创汇智主要在研功能有AEB、ACC、LKA三种。
2026-01-22 00:30:00
17
原创 目标检测YOLO实战应用案例100讲-YOLOv5模型损失函数(二)
Yolov5提供了四个模型:Yolov5s、Yolov5m、Yolov5l和Yolov5x,其中Yolov5s以其较小的深度和特征图宽度脱颖而出。尽管Yolov5在结构上与Yolov4高度相似,同样包含输入端、Backbone、Neck和输出端,但其在细节上进行了诸多改进,使得性能更为出色。
2026-01-18 00:30:00
25
原创 目标检测YOLO实战应用案例100讲-YOLOv5模型损失函数
YOLO(You Only Look Once)系列算法是目标检测领域的重要方法之一,其中 YOLOv5 是其最新版本之一。YOLOv5 在保持高效性的同时,通过一系列优化和改进,提升了检测的准确性和鲁棒性。损失函数作为模型训练过程中的关键组件,对模型的性能有着至关重要的影响。
2026-01-16 00:30:00
28
原创 数学建模算法案例精讲500篇-【大模型】检索增强生成技术(RAG)
检索增强生成(Retrieval-augmented Generation),简称RAG,是当下热门的大模型前沿技术之一。检索增强生成模型结合了语言模型和信息检索技术。具体来说,当模型需要生成文本或者回答问题时,它会先从一个庞大的文档集合中检索出相关的信息,然后利用这些检索到的信息来指导文本的生成,从而提高预测的质量和准确性。RAG是一种通过“先检索、后生成”的方式,是一个提升语言模型生成准确性的技术框架。其核心流程如下:Generator生成器:将检索到的内容连同问题一起输入大语言模型,让它生成更加精准、
2026-01-14 00:30:00
27
原创 算法基础应用精讲-【大模型】检索增强生成技术(RAG)
RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。该技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力,如问答、文本摘要、内容生成等。RAG模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。
2026-01-12 00:30:00
31
原创 目标检测YOLO实战应用案例100讲-CLIP零样本图像识别
CLIP算法的核心是利用自然语言包含的监督信号来训练视觉模型。相比于其他的训练方法,从自然语言中学习具有以下两个优势。首先,相比于标准的有标签图像分类数据集,这种方法无需标注,就很容易扩展数据集;其次,图像和文字配对训练,学习到的特征不单单是一个视觉特征,而是多模态的特征,有助于zero-shot的迁移学习。图像和文本的配对训练需要一个足够大的数据集,然而现有的数据集要么数据量不够,要不标注质量太差,为了解决这个问题,OpenAI他们从互联网上的各种公开来源公收集了4亿(图像,文本)对。
2026-01-11 00:30:00
27
原创 算法基础应用精讲-【自动驾驶】 轨迹预测
动态对象当前及过去的状态就是周围车辆、行人等的当前位置、速度、航向、过去一段时间的轨迹/运动历史。要做到这件事,模型离不开三类关键信息的输入,也会输出不同形式的预测结果,实现的方法也各有优劣。不同车辆、行人与它们之间的相互影响,一辆车的行为可能受到旁边车、前车、后车,乃至道路标志、信号灯、行人、骑车人的影响。车道线、交叉口、车道形状、道路结构、禁行区、转弯区、红绿灯、交通标志等。因为未来不确定,一个对象可能有几种行为(直走、变道、减速、急刹、转弯。包括未来每个时刻该对象可能的位置、速度、方向。
2026-01-10 00:30:00
23
原创 算法基础应用精讲-【大模型】检索增强生成技术(RAG)(二)
检索增强生成(RAG)是对大型语言模型输出进行优化的方法,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM)通过海量数据进行训练,利用数十亿个参数执行诸如回答问题、语言翻译和生成句子等任务。在已经具备强大功能的LLM基础上,RAG通过扩展其能力,使其能够访问特定领域或企业的内部知识库,而无需重新训练模型。这种方法经济高效,能够有效改进LLM输出,在不同情境下保持相关性、准确性和实用性。
2026-01-10 00:30:00
37
原创 数学建模算法案例精讲500篇-【自动驾驶】 轨迹预测(二)
基于特征的机器学习方法,则通过手工提取速度、加速度、相对位置、车道偏离等特征,输入传统回归或分类模型,能在一定程度上识别行为模式,但依赖人工设计特征。其中一个重要方向是多模态预测,其实现实交通的发展往往不止一种可能,如路口停着的车辆可能直行也可能左转,行人可能等待也可能突然穿行,多模态模型会输出多条可能的轨迹并分别给出概率。(道路、车道线、建筑、行人、交通标志)和动态对象(其他车辆、行人、自行车等),告诉系统“现在都有哪些东西,它们在哪里、速度怎样、朝哪走”。因此,轨迹预测是自动驾驶系统的。
2026-01-07 00:30:00
44
原创 数学建模算法案例精讲500篇-【自动驾驶】 轨迹预测
真实的道路情况瞬息万变别的车可能突然变道、有人可能横穿马路、有行人或骑车人可能忽然加速或减速。想要安全驾驶,只是知道“他们现在在哪里、速度是多少”是完全不够的。如果系统只是被动反应,就容易出问题,尤其当速度较高、道路复杂的时候,没有预测,车辆就只是横冲直撞,非常危险。轨迹预测的作用,就是让自动驾驶系统对周围交通参与者未来可能的动作有一个大致预判。这样自动驾驶系统就能在做路径规划和操控之前,考虑到这些不确定性,预留安全距离、调整速度、选择合适方案。举个例子,当另一辆车突然变道到。
2026-01-05 00:30:00
31
原创 目标检测YOLO实战应用案例100讲-基于暗通道算法优化的雾天目标检测(下)
在自行车类别中,FOG-YOLO算法mAP值最高,AOD-Net算法和 YOLOv4算法的组合比DCP算法和YOLOv4算法组合和ACDCP算法和 YOLOv4算法组合的mAP值高,ACDCP算法和YOLOv4算法组合的mAP值最 低。在汽车、公交车、人类别中,FOG-YOLO算法 的对数平均漏检率最低,ACDCP算法和YOLOv4算法组合比ACDCP算法和 YOLOv4算法组合和AOD-Net算法和YOLOv4算法的组合的对数平均漏检率低, AOD-Net算法和YOLOv4算法的组合对数平均漏检率最高。
2025-12-31 00:30:00
39
原创 目标检测YOLO实战应用案例100讲-基于暗通道算法优化的雾天目标检测(中)
暗通道先验算法存在颜色恢复不真实、图像细节恢复不够清晰等问题。为了 解决上述问题,本文提出了一种色彩自适应改进算法ACDCP算法:基于暗通道 先验算法,利用通道分离将图像拆分成R、G、B三通道,对每个通道进行高斯 滤波,基于暗通道先验算法得到每个通道的透射率,并且通过偏置系数C来修正 大气光值的真实值。本文提出的算法可应用于彩色雾天图像去雾,图3.1为标准实施流程,其流 程可以分为四个部分:(1)对于颜色偏黄的图像最终会影响去雾效果,因此本文首先采用完美反 射法[82]进行颜色校正。
2025-12-30 00:30:00
42
原创 目标检测YOLO实战应用案例100讲-基于暗通道算法优化的雾天目标检测
目标检测(Object Detection,OD)是从视频或者图像中找到目标区域并标记 出来的计算机视觉任务,通过算法提取特征来识别和定位特定类别的对象。目标 检测在现实中具有广泛的应用场景,如人脸检测、车辆检测、车牌识别、行人计 数以及无人驾驶等。目标检测算法通过对视频或图像内容提取特征进行学习,最 后回归目标分类结果及其检测框。现有目标检测模型多基于自然场景下无降质的 公共数据集,面向雾天场景下目标检测的数据集较少。
2025-12-29 00:30:00
41
原创 目标检测YOLO实战应用案例100讲-基于深度学习的水下混凝土结构表观病害智慧识别方法(下)
Ghostnet是一种轻量级网络[79],它可以解决卷积神经网络在计算机内存和资源有 限的情况下难以部署到嵌入式设备上的问题。Ghost module和Ghost bottleneck模块是。该网络中的即插即用模块,其工作原理是通过廉价的卷积操作生成更多的特征信息, 从而更好地解释特征图像背后的信息。这些模块可以轻松地集成到现有网络结构中,并提高模型的效率和质量,在计算效率和模型质量之间取得平衡。(1)Ghost module和Ghost bottleneck模块介绍。
2025-12-25 00:30:00
35
原创 目标检测YOLO实战应用案例100讲-基于深度学习的水下混凝土结构表观病害智慧识别方法(中)
水下混凝土结构在长期服役过程中,易受水流冲刷、撞击、氯离子侵蚀等因素影 响,易产生裂缝、钢筋的裸露与锈蚀、表面剥落等损伤现象。因水下环境的特殊性, 过于细微的病害特征难以通过视觉的方法进行识别。因此,本文仅针对常见的三种典 型的水下混凝土结构表观病害(裂缝、露筋、剥落)进行识别研究。首先,制作尺寸为70cm×20cm×12cm的钢筋混凝土试块一批,通过压力试压机进行压载破坏,同时人工制造形态各异的混凝土结构表观病害特征。
2025-12-24 00:30:00
38
原创 数学建模算法案例精讲500篇-【自动驾驶】SORT目标跟踪算法(附python代码实现)
多目标跟踪(Multi-Object Tracking,MOT),顾名思义,就是指在同一段影像序列中同时跟踪多个目标。相比单目标追踪,多目标追踪问题要更加复杂。根据应用场景的不同,跟踪算法分为两类,在线跟踪(online tracking)和离线跟踪(offline tracking/batch tracking)。在线跟踪只能使用当前帧及过去帧的信息对当前帧中目标的位置进行推测,这和人类的跟踪方式相同;而离线跟踪则充分利用整个视频的全部信息,对当前帧进行追踪,不仅可以利用过去帧的信息,还可以利用未来帧。
2025-12-20 00:30:00
55
原创 目标检测YOLO实战应用案例100讲-基于深度学习的水下混凝土结构表观病害智慧识别方法
近年来,随着我国科学技术的进步与经济的飞速发展,带动了交通建筑行业的迅 猛发展,同期建设了大量的如桥梁、大坝、港口码头等涉水基础建筑。然而,这些涉 水建筑物在长期服役过程中,其水下结构部分长期承受外界荷载因素与自然环境侵蚀 作用,会造成不同程度的损伤,这些损失最初会以表观病害的形式出现。其中,承受 的外界荷载因素主要有:车辆荷载和水上漂浮物对涉水建筑的冲击作用等;遭受的自 然环境侵蚀主要有:水生生物对混凝土结构的腐蚀、水流的冲刷以及海水的腐蚀等;使得水下混凝土结构出现如裂缝、露筋、孔洞以及剥落等病害。
2025-12-19 09:16:30
133
原创 算法基础应用精讲-【自动驾驶】惯性导航系统(INS)
惯性导航系统(INS,Inertial Navigation System)也称作惯性参考系统,是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。
2025-12-17 00:30:00
96
原创 MATLAB基础应用精讲-【自动驾驶】SORT目标跟踪算法(附python代码实现)
SORT是论文《Simple Online and Realtime Tracking》的缩写,它是一个解决多目标跟踪(Multiple Object Tracking: MOT)问题的算法,该算法基于“tracking-by-detection”框架,且是一个在线跟踪器(Online Tracker)。而所谓Online Tracker,就是跟踪器只能利用当前和之前帧的检测结果去实现跟踪算法。不考虑遮挡,无论是短时的还是长时的。
2025-12-16 15:17:49
50
原创 算法实战应用案例精讲-【自动驾驶】惯性导航系统(INS)
惯性导航系统是一种自主式的导航技术,其核心特点是不依赖于任何外部信号输入。它通过持续测量载体的加速度和角速度,利用牛顿力学原理实时推算出载体的三维位置、速度和姿态信息。惯导系统在导航定位领域具有不可替代的优势,因为它能够在任何时刻以高频次输出车辆运动参数,是唯一可以输出完备的六自由度数据(三个平动量和三个转动量)的设备。
2025-12-15 00:30:00
50
原创 目标检测YOLO实战应用案例100讲-水下退化图像增强与目标检测(续)
在特征提取过程中,为了不损失分辨率的同时,扩大映射到图像上的感受野,提 取到不同尺度的上下文特征,本文设计了多路径扩张卷积块(MDC),结构如图3-3所 示。首先输入图像퐼 (푥)经过3×3卷积转换为特征图,传入MDC中,然后通过三支不 同扩张率并行的卷积路径,对图像进行特征提取。三支路径分别采用扩张率为1、2、3, 卷积核大小为3×3的卷积运算,其感受野大小分别为:3×3,5×5和7×7,从而获 得特征图映射到图像上不同大小的感受野信息,提取到不同尺度的特征信息;
2025-12-14 00:30:00
44
原创 算法基础应用精讲-【自动驾驶】惯性导航系统(INS)(二)
惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。定义:INS是一种自主式导航系统,它不依赖于外部信号或参考点,而是利用安装在载体上的陀螺仪和加速度计等传感器来测量载体的运动参数,如角速度和线加速度,进而推算出载体的位置、速度和姿态等信息。
2025-12-13 00:30:00
59
原创 目标检测YOLO实战应用案例100讲-水下退化图像增强与目标检测
本章主要介绍了构建基于深度学习的水下图像增强及目标检测方法所涉及的理论 知识,首先重点分析水下图像光学成像的物理模型及特性,引出水下图像退化的原因;然后介绍了卷积神经网络的基本原理及组成部分;最后引入分析两阶段目标检测经典 算法Faster R-CNN网络模型。本章内容为论文后续水下图像增强和目标检测算法设计 奠定理论基础。
2025-12-12 00:30:00
43
原创 数学建模算法案例精讲500篇-【数模应用】Bellman-Ford路径算法
Bellman-Ford算法也是一种用于解决单源最短路径问题的算法,但和Dijkstra算法不同的是,它特别适用于图中存在负权边的情况(但无负权重回路,理由后续解释)。该算法由理查德·贝尔曼(Richard Bellman)和莱斯特·福特(Lester Ford)共同创立,并因此得名。Bellman-Ford算法的主要思想是通过对图中所有边进行多次(外循环,通常是V-1次,V是顶点数)松弛操作来逐步逼近最短路径。在每次迭代中,算法会检查每一条边(内循环),并尝试通过该边来更新起点到每个顶点的最短距离估计。
2025-12-10 00:30:00
47
原创 目标检测YOLO实战应用案例100讲-基于超分辨率重建的航拍图像目标检测(续)
我们在4倍放大因子上进行上采样,将我们的方法与WDSRESRGAN相比较。在图像处理领域,常用PSNR(即峰值信噪比)来衡量处理方法的准确性和处理后图像的品质。PSNR是基于原始图像与处理后的图像之间的均方误差(MSE)来计算的。但近来的许多实验表明,PSNR值并不能很好的反映图像的视觉效果,有时PSNR值较低的图像反而比PSNR值较高的图像感知质量更好。因此,我们不将PSNR值作为衡量标准,而是通过生成图像视觉效果展示本文超分辨率重建算法的优势。
2025-12-08 00:30:00
180
原创 MATLAB基础应用精讲-【数模应用】Bellman-Ford路径算法
贝尔曼-福特算法(Bellman-Ford)是由理查德·贝尔曼(Richard Bellman) 和 莱斯特·福特 创立的,求解单源最短路径问题的一种算法。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore 也为这个算法的发展做出了贡献。它的原理是对图进行V-1次松弛操作,得到所有可能的最短路径。其优于迪科斯彻算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达O(VE)。但算法可以进行若干种优化,提高了效率。
2025-12-08 00:30:00
52
原创 目标检测YOLO实战应用案例100讲-基于超分辨率重建的航拍图像目标检测
检测技术,接着介绍了不同类型的超分辨率重建技术,最后介绍了现有的无人机航拍数据集。是,在低分辨率图像已知的情况下,最大化高分辨率图像的后验概率。但这类方法对放大因子比较敏感,在大的放大因子上,仍然会产生细节过于平滑的图像。测和多目标跟踪,两个部分的注释是不同的。果返回给生成器,迫使生成的图像与真实图像更接近,从而使生成图像包含更多的细节信息。务中的一种基础问题,它从一幅图像中自动定位一个或多个物体的坐标,在物体周围用一个。个非常重要的研究方向。建以提高图像的分辨率,从而扩大目标的尺寸并为目标增加细节信息。
2025-12-03 00:30:00
138
原创 目标检测YOLO实战应用案例100讲-基于车载长短焦相机的目标检测与融合(下)
可见 YOLOv4-Tiny-CBAM目标检测方法难以对65m以外的目标进行准确而又全面的检测,而采用改进后的长短焦相机目标匹配与融合算法能有效提升目标检测的距 离,甚至可对105m处的目标进行准确的检测。由表4.5中数据可知,采用本文所提出的方法,对长短焦目标检测结果进行匹 配与融合,最终的平均检测准确度达到98.91%,相比原始的YOLOv4-Tiny算法的 平均准确度提高了10.79%,比本文所改进的网络YOLOv4-Tiny-CBAM平均准确 度提高了2.23%。
2025-12-01 00:30:00
51
原创 目标检测YOLO实战应用案例100讲-基于车载长短焦相机的目标检测与融合(中)
显然,通过在YOLOv4-Tiny网络结构中引入三种不同的注意机制,目标检测 的精确度都有一定的提高,但是引入混合注意力机制的YOLOv4-Tiny的网络目标 检测性能最好,检测平均精度达到了90.20%。基于深度学习的目标检测算法,对于样本的数量以及多样性都具有较高的要 求,其检测性能的优劣,不仅受网络结构和训练过程的影响,也与数据集的质量息 息相关。与通道注意不同的是,通道注意力关注的是信息“是什么”,空间注意力更加 关注重要信息“在哪里”,是对通道注意力的重要补充。
2025-11-28 00:30:00
54
原创 目标检测YOLO实战应用案例100讲-基于车载长短焦相机的目标检测与融合
近些年来,随着人工智能、深度学习、传感器等技术的飞速发展,自动驾驶成 为了学术界、工业界研究的重点领域。自动驾驶技术综合了计算机科学、人工智能、 传感器技术、车辆工程等多领域、多学科的最新研究成果,是一项交叉性极强的工 程研究[ 1]。《中国制造2025》提出将汽车智能化作为智能出行领域的重点发展方向 的倡议[ 2],成熟的自动驾驶技术能减少交通事故的发生,对于保障驾驶安全性方面 具有重要意义。除此之外,自动驾驶还能给用户带来舒适的驾驶体验,其核心技术 也被深入挖掘,应用于各行各业。
2025-11-26 00:30:00
79
转载 算法实战应用案例精讲-【数模应用】异常点检测算法——Isolation Forest
什么时候我们需要异常点检测算法呢?常用的有三种情况。1.做数据预处理的时候需要对异常的数据做过滤,防止对归一化等处理的结果。2.对没有标记输出的特征数据做筛选,找出异常的数据。3.对有标记输出的特征数据做二分类时,由于某些类别的训练样本非常少,类别严重不平衡,此时也可以考虑用非监督的异常点检测算法来做。
2025-11-25 00:30:00
69
原创 MATLAB基础应用精讲-【风控模型】ICE评分模型
ICE评分模型由增长黑客专家Sean Ellis提出,主要用于评估不同创意或实验的优先级。其核心思想是通过三个关键维度进行量化评分,从而帮助团队选择最具潜力的方案进行落地。
2025-11-18 00:30:00
82
原创 数学建模算法案例精讲500篇-【风控模型】ICE评分模型
ICE 评分模型,由 Sean Ellis 提出,是一种广泛应用于项目管理和决策的工具。此模型用于快速的优先级排序,旨在识别并优先处理能带来最大增长机会的项目或任务。它主要由三个关键要素组成:Impact(影响)、Confidence(信心指数)以及 Ease(容易程度)。在实施 ICE 评分模型时,每个要素都分配一个 1 到 10 的评分。Impact 评估任务或项目完成后对目标(如用户增长、收入增加)的潜在影响,分数越高,影响越大。
2025-11-16 00:30:00
95
原创 数学建模算法案例精讲500篇-【深度强化学习】深度确定性策略梯度(DDPG)(附MATLAB和python代码实现)
它是一种学习连续动作的无模型策略算法。它结合了DPG(确定性策略梯度)和DQN(深度Q网络)的思想。它利用DQN中的经验重放和延迟更新的目标网络,并基于DPG,可以在连续的动作空间上运行。# 用于生成带有噪声的动作def __init__(self, action_space, mu=0.0, theta = 0.15, max_sigma = 0.3, min_sigma = 0.3, decay_period = 100000):#decay_period要根据迭代次数合理设置# 均值 mu。
2025-11-12 00:30:00
136
1
原创 数学建模算法案例精讲500篇-【深度强化学习】SAC(Soft Actor-Critic)算法(附MATLAB和python代码实现)
强化学习算法是机器学习的一个重要分支,它通过智能体(Agent)与环境(Environment)的交互来学习最优策略,以最大化累积奖励。强化学习的经典算法有SAC、Q-learning、DQN、DreamerV3、DDPG、PPO等。其中,SAC(Soft Actor-Critic)是一种基于最大熵强化学习框架的算法,通过在策略优化过程中引入熵最大化,平衡了探索和利用,使智能体能够在复杂环境中更有效地探索和学习。
2025-11-10 00:30:00
156
MATLAB基础应用精讲-数模应用图像修复-Criminisi算法MATLAB代码
2024-11-21
目标检测YOLO实战应用案例100讲-3D Lidar MOT 激光雷达点云 感知 多目标追踪
2024-04-19
《光电图像处理》-附详细PPT讲解
2025-12-10
【最优化算法】基于ADMM的凸优化求解方法:交替方向乘子法原理、变形技巧及在LASSO、矩阵分解与图像去噪中的应用
2025-11-18
水利工程中雨水管理模型SWMMH的技术实现与应用
2025-11-18
MATLAB算法实战应用案例精讲-【数模应用】-第十一届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar
2025-02-27
MATLAB算法实战应用案例精讲-【数模应用】-第十三届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar
2025-02-27
MATLAB算法实战应用案例精讲-【数模应用】-第十四届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar
2025-02-27
MATLAB算法实战应用案例精讲-【数模应用】-第十二届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar
2025-02-27
MATLAB基础应用精讲-数模应用DTMF信号分析与仿真(附MATLAB GUI源码)
2025-02-05
MATLAB基础应用精讲-数模应用基于BP神经网络的交通流量预测(附数据及MATLAB源码)
2025-02-05
MATLAB基础应用精讲-【智能优化算法】黏菌算法(SMA)(附MATLAB和python代码实现)
2025-01-10
MATLAB基础应用精讲-数模应用不确定多式联运路径优化问题(附MATLAB多种算法代码实现)
2025-01-08
MATLAB基础应用精讲-数模应用基于PCM编码QAM调制与解调仿真(附MATLAB源代码)
2024-12-20
MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算Itti算法MATLAB源代码
2024-12-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅