自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2023)
  • 收藏
  • 关注

原创 数模应用-MATLAB基础知识精讲系列文章目录介绍(持续补充ing)

本专栏以MATLAB基础知识讲解为主,相信有很多刚入门的理工科小伙伴,对于MATLAB这个软件还不是很熟悉,在这里给各位学弟学妹们一个小建议:大学期间数模竞赛如果有机会尽量去参加,一方面是对自己所学知识的一次检验,另外,如果能在比赛中获得好名次的话,对你之后的求职升学等方面都会有很大助力!本专栏的进阶版参见博主的这个专栏,里面详细列举了各类算法的算法原理、应用案例及多种编程语言的代码实现,配合基础篇一起学习能达到事半功倍的效果哦。

2022-10-08 09:03:23 863

原创 数学建模-MATLAB算法精讲系列文章目录介绍(持续补充ing)

结合实际案例,从算法背景开始一步步到最终代码实现,本系列文章主要以matlab代码为主,为照顾学习其他编程语言的小伙伴,大部分算法会附带python、Java、C++、R语言等市面上主流代码,满足各层面的用户学习。部分内容参见网络文献,如有侵权,请联系博主删除本专栏中涉及的MATLAB基础知识讲解篇详见文章内容主要包括算法背景、算法原理、算法优缺点、算法伪代码、算法的应用场景、算法的应用案例、算法的拓展以及多语言实现算法的代码化。

2022-08-30 09:26:54 2718

原创 目标检测YOLO实战应用案例100讲- 基于深度学习的红外小目标检测关键算法研究(续)

上节阐述的共生滤波可以平滑纹理方面处理的更加优秀,同时清晰保留了纹理之间的边 界。本小节介绍基于金字塔共生特征架构的红外小目标检测算法,算法的整体框架如图3.2 所示。 首先,定义自适应结构元素。因为不同的结构元素对最终的平滑效果影响很大,而红外 小目标的所占像素相对于背景而言是很少的,所以结构元素的尺寸不易过大。考虑到本文所 使用的数据集中,小目标所在区域的长宽都不超过7个像素点,所以采用7×7的菱形结构元 素,结构元素如图3.3所示。图中标红的为结构元素中心位,通过这个结构元素对原图进行 遍历,获得当

2025-04-24 00:30:00 17

原创 MATLAB基础应用精讲-【数模应用】数字图像处理:去卷积 (附MATLAB和python代码实现)

卷积在图像处理的应用中一般是卷积滤波,即用一个卷积模板(卷积核/滤波器)去进行滤波,而傅里叶变换在信号处理中往往是变换时域和频域,在图像处理中便是空域和频域。图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。去卷积是卷积的逆运算,可以用来从卷积结果中还原原始信号。

2025-04-23 00:30:00 13

原创 MATLAB基础应用精讲-【基础知识篇】Matlab: 自动计算属性的默认值

当创建图形时,MATLAB® 会为这一特定图形适当设置某些属性值。这些属性,如控制坐标轴范围和图窗渲染器的属性,具有相关联的模式属性。这一模式属性确定MATLAB是否计算此属性值(模式为 auto)或属性是否使用指定值(模式为 manual)。通过以下方式控制属性定义的各个方面:分别为每个属性指定默认值,参考默认属性值。在类构造函数中为属性赋值,参考在构造函数中为属性赋值。用常量值定义属性,参考Named Value。按代码块为属性特性赋值,参考属性特性。

2025-04-22 00:30:00 19

原创 目标检测YOLO实战应用案例100讲- 基于深度学习的红外小目标检测关键算法研究

在信息社会以及计算机算力的快速发展下,对于数据处理的实时性和准确性要求也越来 越高。伴随着人工智能这一技术领域的出现,使得在一些特定场景下,计算机视觉可以承担 人类的部分视觉工作任务。计算机视觉的含义是使用计算机对生物视觉的一种模拟,更准确 的说,就是用摄像头代替人眼的部分工作,对待检测目标进行测量、识别和追踪等任务,并 使用计算机处理采集到的图像或视频信息,其最终目标就是使计算机能够像人脑一样具有观 察理解信息流的能力。

2025-04-21 00:30:00 22

原创 目标检测YOLO实战应用案例100讲- 基于深度学习的无人机小目标检测算法研究(续)

3.3.1实验平台搭建在算法训练过程中,网络的学习能力与效率,与相应参数的设置相关,而每 一次参数设置都伴随着百亿次的浮点数运算,因此每一次网络的训练都需要消耗大量的时间。本课题在64位的WINDOWS 10系统,选用tensorflow和darknet框 架训练网络模型,依赖的库有OpenCV3.5、numpy等,CPU为Intel(R)Xeon(R) CPU E5-2667 v4@3.2GHZ,GPU为NVIDIA Ge Force RTX 3090。

2025-04-20 00:30:00 33

原创 目标检测YOLO实战应用案例100讲- 基于深度学习的无人机小目标检测算法研究

随着科学技术与人工智能的不断发展,无人机的使用给人们的日常生活和工 作提供了巨大的便利。无人机凭借尺寸小、操作灵敏等优点,替代人类完成一些 危险或难度高的任务,例如森林防火、高压输电线路巡检、环境监测等。伴随着 无人机应用技术的发展,对于无人机应用技术人才的需求也逐渐增多。而当无人 机作业于复杂环境时,对于操作员飞行技术则需要严格的要求,因此相应地也会 在专业考核系统中对于操作员的飞行能力进行评估。目标检测主要从图像背景中分离出前景目标,在车辆检测、智能监控、电路 巡检等领域有着重要的应用。伴随着计算机图

2025-04-19 00:30:00 41

原创 MATLAB基础应用精讲-【基础知识篇】比较日期时间

在MATLAB中,处理日期和时间通常涉及使用datetime类。datetime类是MATLAB中用于表示日期和时间的首选方式,它提供了灵活的方法来进行日期时间的比较、计算和格式化。

2025-04-18 00:30:00 28

原创 MATLAB基础应用精讲-【数模应用】使用 TCP/IP 接口进行数据的写入和读取(附MATLAB和python代码实现)

​无线通信模块是一种能够在无线网络中进行数据传输的设备。它通常集成了网络接口层、传输层和应用层等多个功能模块,以支持TCP/IP等网络通信协议。TCP/IP协议族是互联网的基础通信协议,它定义了设备间如何进行数据传输的规则和标准。通过TCP/IP协议,无线通信模块可以与PC端等设备进行稳定、可靠的数据传输。无线通信模块可以通过TCP/IP协议向PC端传送数据。无线通信模块实现TCP/IP协议向PC端传送数据的过程主要包括:首先,当需要传输数据时,会将数据添加TCP/IP首部,然后通过无线网络发送出去。

2025-04-17 10:51:19 131

原创 目标检测YOLO实战应用案例100讲- 基于卷积神经网络的小目标检测算法研究与应用(续)

作为单阶段目标检测算法中的经典框架,YOLO系列算法一经提出便以其极高的检测速率成为实时性目标检测算法的代名词。随着YOLO系列的迭代,其无论是从模型推理速度还是模型的检测精度都有了极大的提升。YOLOv5算法作为YOLO系列的集大成者,整体结构和YOLOv4相似,仍然是分为输入端、特征提取骨干网、特征融合网络以及检测头网络四部分,但是每个部分都有所改进。网络通过depth_multiple和width_multiple两个参数分别控制模型的深度和宽度,从而在不修改。

2025-04-15 00:30:00 22

原创 MATLAB算法实战应用案例精讲-【数模应用】支持向量机情感识别(附MATLAB、python和C语言代码实现)

支持向量机(SVM)可能听起来像一个复杂的术语,但它却是机器学习领域一种简单而强大的方法。你可以把它想象成一个智能边界划分者,帮助机器对数据进行分类。无论是分类垃圾邮件、识别人脸还是检测情感,SVM都能找到分离不同类别数据的最佳线(或超平面)。SVM之所以如此有效,是由于它不仅能够处理简单的任务,还能够轻松处理复杂的高维数据。SVM之所以脱颖而出,是由于它善于找到分离图像等复杂数据的最佳方法,只需要几个关键点。

2025-04-13 00:30:00 26

原创 MATLAB基础应用精讲-【数模应用】卡尔曼滤波模拟匀加速直线运动(附MATLAB和python代码实现)

卡尔曼滤波使用关联的观测数据来估计目标的状态,并预测目标的未来位置和速度等信息。目标跟踪过程中,测量数据通常会受到各种噪声的影响,例如传感器噪声、环境干扰等。卡尔曼滤波器可以通过对测量数据和系统模型的加权处理来减少噪声的影响,提供更准确的目标状态估计。卡尔曼滤波用来估计带噪信号中隐藏的真实信息。卡尔曼滤波是一种利用线性状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

2025-04-12 00:30:00 22

原创 MATLAB基础应用精讲-【数模应用】自回归模型(Autoregressive Model,AR)(附MATLAB、R语言和python代码实现)

自回归模型(Autoregressive Model,简称 AR 模型)是一种统计模型,用于分析和预测时间序列数据。以下是自回归模型的一些基本概念:1. 时间序列数据:时间序列是按照时间顺序排列的数据点集合,例如股票价格、气温记录或销售额等。2. 自回归:自回归模型的核心思想是使用时间序列过去的值来预测未来的值。"自回归"意味着模型使用自身的过去值作为预测未来值的依据。3. 滞后(Lag):在自回归模型中,时间序列的过去值被称为滞后值。

2025-04-11 00:30:00 28

原创 目标检测YOLO实战应用案例100讲- 基于卷积神经网络的小目标检测算法研究与应用

如图1.1所示,传统的目标检测方法主要包括以下三个步骤,分别是:寻找候选区域、特征提取以及使用设计的分类器对目标进行分类。首先,通过候选框在输入图像上选择多个大小不一的候选区域,接着使用设计的特征提取器提取每个候选区域中的手工特征,最后将提取到的手工特征送入不同种类的分类器进行回归和分类,从而检测出待检目标。传统的目标检测方法第一步是通过候选框来确定目标的位置,由于目标的大小和出现的位置具有不确定性,所以一般是采用大量多尺度的滑动窗口对图像上的每一个像素点进行遍历。

2025-04-10 08:24:17 339

原创 目标检测YOLO实战应用案例100讲-基于改进的YOLOv4柑橘目标检测算法

人工神经网络(ANN)是科学家通过对人脑逻辑的分析,通过数学建模的方式模拟大脑计算信息的过程,建立的一种数据处理模型。通过合理的设计,利用训练数据进行自适应学习,生成一个能拟合海量数据的多维非线性函数。深度学习就源于人工神经网络的研究[34],深度学习其实就是通过对模型层数加深的神经网络。深度学习和人脑的认知方式异曲同工之处,人随着年龄越大,经验越来越丰富,处理事情就越来越好,深度学习模型也一样,随着模型的加深,输入数据。

2025-04-09 00:30:00 46

原创 MATLAB基础应用精讲-【数模应用】利用散点数据进行函数曲线拟合(附C++、python、MATLAB和R语言代码)

1. 在散点图中,右键点击数据点,选择“格式数据系列”。2. 选择“趋势线”,然后在选项中自定义趋势线的类型和格式。3. 你可以通过调整趋势线的选项来优化拟合效果,例如改变多项式的次数。

2025-04-08 00:30:00 26

原创 MATLAB基础应用精讲-【数模应用】迭代扩展卡尔曼滤波算法(附MATLAB、python和C++代码实现)

卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态。

2025-04-07 00:30:00 34

原创 MATLAB算法实战应用案例精讲-【数模应用】迭代扩展卡尔曼滤波算法(附MATLAB、python和C语言代码实现)

卡尔曼滤波器r是用于从间接和不确定测量估计系统状态的最佳估计算法。卡尔曼滤波器仅针对线性系统定义。如果有非线性系统并且想要估计系统状态,则需要使用非线性状态估计器。卡尔曼滤波器广泛用于使用激光雷达和雷达传感器估算汽车位置。这些传感器的测量不准确,因为它们会漂移或产生噪音。卡尔曼滤波器可用于融合这些传感器的测量值,以找到精确位置的最佳估计。卡尔曼滤波周期卡尔曼滤波器代表我们的高斯分布,并迭代两个主要周期:预测和测量更新。

2025-04-06 00:30:00 43

原创 目标检测YOLO实战应用案例100讲-基于无人机探测视频的车辆 目标检测方法研究(续)

通过对采集的无人机探测视频进行每5帧抽取一张图片的操作,共获得9143 张无人机车辆目标检测数据,同时经过数据增强处理又获得5424张数据集。 无人机探测视频车辆目标检测数据集的构建需要获取图像中目标的位置以 及类别信息,通过观察无人机拍摄的数据集,最终确定将car,van,truck和bus 这四个种类的目标进行检测。如图3-7所示是部分样本数据集的示意图,car 类 别主要包括客车、汽车、商务车,van类别主要是面包车、货运箱车等,bus 类 别主要是公交车、大型巴车等,truck 类别主要是货车和

2025-04-03 00:30:00 66

原创 目标检测YOLO实战应用案例100讲-无人驾驶车辆在复杂环境下的目标检测(续)

在SSD算法中一共有5层不同大小的特征层用来检测,每一层特征层中采用了4种 或者6种尺度的锚框,并且每一层的锚框大小会线性的增加,分别为30、60、111、162、 213、264,共有5776个小尺度锚框,2916个中尺度锚框,40个大尺度锚框,在多种尺度 的检测层上设置不同大小的锚框,这种设置方法相对于Faster R-CNN显得更加合理。在目标检测任务中,主要分为了目标的分类和定位,其中分类的好坏直接决定了检测 结果,只有对目标完成正确的分类,定位才有意义,因此分类对于目标检测任务是至关重 要的。

2025-04-02 00:30:00 57

原创 目标检测YOLO实战应用案例100讲-基于深度学习的交通标志小目标检测与识别研究(续)

TT-100K数据集虽然规模较大、数据质量较高及所含种类也较多,但并非完 美,正因其分类种类多达221种,导致数据集中各种类的出现频率分布相差悬殊, 出现最多的交通标志出现超过2500次,而最少的只出现一次,还有很多类别出 现不到10次,还有部分种类缺乏样本。TT100K出现频率大于100的类别和对 应数量统计如图3.8所示。 在实际研究中常采用出现频率最高的若干个类别或出现频率超过100的45 个类别进行研究,因为出现频率过少的类别不适合用深度学习的方法进行检测训 练。如果使用原始TT-100K数据集的全

2025-04-01 00:30:00 53

原创 目标检测YOLO实战应用案例100讲-基于孤立森林算法的高光谱遥感图像异常目标检测(续)

圣地亚哥机场数据集(San Diego Airport data set,SD-Airport):第一个数据 集由美国加利福尼亚州圣地亚哥机场区域的机载可见光/红外成像光谱仪 (Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)获取。该数据集空间分辨 率约为3.5m/pixel,光谱分辨率为10nm。它包含224个光谱波段,波长范围为370-2510nm。

2025-03-31 08:49:32 264

原创 目标检测YOLO实战应用案例100讲-跨模态、多级别融合的RGB-D显著目标检测方法研究(续)

在第二章介绍了本研究的跨模态特征融合方法,第二章对于多级别特征的融合, 使用的是与基线模型baseline相同的方法:相邻级别的特征中,高级特征进行上采 样到与低级特征相同的尺度,再将高级特征通过降维得到与低级特征相同的通道数 量,最后对二者进行特征叠加,如此自顶向下的进行多级别的特征融合。本章主要 介绍本研究在特征层面的另一发现,并基于此发现引出的本文的第二个创新点:多 级别特征的融合方法。另外,在网络最深层,本文设计了一个新的模块来获取大的 感受野,对于大尺度目标能够增加更多语义信息,提升检测效果。骨

2025-03-26 00:30:00 107

原创 目标检测YOLO实战应用案例100讲-小麦麦穗的目标检测与杂草分类识别研究(续)

本章的全球小麦穗检测数据集(http://www.global-wheat.com/)是公开数据集。该数据集是由多个国家共同构建的,并且是第一个从田间光学图像中检测麦穗的 大规模数据集。该数据集中包含了4700张高分辨率RGB图像和19万株从世界 各地几个国家收集的不同生长阶段、不同基因型的标记小麦。在户外野外图像中 准确检测小麦头部是一项视觉挑战。浓密的小麦植株经常重叠,风会使麦穗发生 摇晃,使得拍摄的照片变得模糊。这两种情况都使检测农作物小麦麦穗变得困难。

2025-03-25 00:30:00 49

原创 MATLAB基础应用精讲-【数模应用】基于 PRISM 模型的无人机目标搜索与避碰(附MATLAB、C++和python代码实现)

随着无人机的发展,无人机避障问题一直是无人机应用中的热点和难点问题。在 对避障问题的研究与探索中, 形成了许多比较成熟的理论方法,例如可视图法、栅格 法与人工势场法等等,其中最著名的是向量场直方图方法, 也就是VFH算法。于是 采用VFH算法和路径规划相结合的方法实现无人机沿着预定路径前进中的避障问题。采用激 光雷达来获取机器人周围环境信息,并用仿真验证所做的避障设计是可以实现 的。

2025-03-24 00:30:00 76

原创 目标检测YOLO实战应用案例100讲-基于元学习和通道剪枝的轻量级遥感图像目标检测方法(续)

在这一章节中,我们将详细地介绍基于元学习的自动化通道剪枝方法,通过 我们剪枝方法得到的子网络可以满足不同浮点运算量的限制约束。我们将N表示如图4-1所示,我们的通道剪枝方法可以分为两个步骤,首先是训练权重生 成元网络,该网络是一种通过输入随机初始化的网络编码向量后可以自动生成子 网络权重的权重生成模型,每一个网络编码向量都代表了一种特定的子网结构, 元网络会为每一个子网结构生成其相对应的权重。

2025-03-24 00:30:00 115

原创 目标检测YOLO实战应用案例100讲-基于特征增强的多感受野小目标检测算法在海思平台的应用(续)

可以证明在对小目标的检测上,本文改进。表4.1展示了不同层的嵌入方式在三种基线下的top-1 error对比情况,对于 ResNet-50、ResNet-101、ResNet-152,底层的嵌入方式均取得了较好的效果,具 体来讲,在底层(Conv1层)嵌入FA-block使得ResNet-50的top-1 error从24.7%减少到22.6%,这个错误率甚至相对于ResNet-101的23.5%更小,而ResNet-101 网络的计算量几乎是加入了FA-block的ResNet-50网络的两倍。

2025-03-23 00:30:00 64

原创 MATLAB算法实战应用案例精讲-【数模应用】模拟退火算法求解全局最大值最小值问题(附MATLAB、python和Java代码实现)

模拟退火算法(SA)来源于固体退火原理,是一种基于概率的算法。模拟退火算法从某一较高初温出发,伴随温度参数的下降,寻找目标函数的全局最优解。模拟退火算法属于贪心算法的一种,但引入了随机因素,在每次迭代是会有一定的概率接收恶化解,因此会有一定的可能性跳出局部最优解,搜索到全局最优解。

2025-03-23 00:30:00 66

原创 目标检测YOLO实战应用案例100讲-基于遥感图像目标检测的输电走廊风险点及可视化研究(续)

本文篇幅较长,分为上下两篇,上篇详见。

2025-03-23 00:30:00 408

原创 目标检测YOLO实战应用案例100讲-基于卷积神经网络的昆虫 生长阶段小目标检测方法研究(续)

基于卷积神经网络的目标检测技术首先要求收集大量的样本图片,然后把这些图 片标注出目标的位置,生成文件,作为训练数据,以此来训练模型。目标检测技术的 关键步骤,一部分是需要利用学习模型进行相关生物信息的比较,另一部分是从大量 实验数据中提取特征并形成训练数据,使用训练数据来训练模型,得到识别模型来保 证系统的准确性。利用改进的YOLOv3模型对样本数据集进行训练,如果数据集的 数量不够,将直接影响训练的好坏。

2025-03-22 00:30:00 82

原创 MATLAB基础应用精讲-【数模应用】模拟退火算法求解全局最大值最小值问题(附C++、MATLAB和python代码实现)

模拟退火算法(Simulated Annealing,SA)的思想最早由Metropolis等人于1953年提出:Kirkpatrick于1983年第一次使用模拟退火算法求解组合最优化问题。模拟退火算法是一种基于MonteCarlo迭代求解策略的随机寻优算法, 其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。其目的在于为具有NP(Non-deterministic Polynomial) 复杂性的问题提供有效的近似求解算法,它克服了其他优化过程容易陷入局部极小的缺陷和对初值的依赖性。

2025-03-22 00:30:00 43

原创 目标检测YOLO实战应用案例100讲-基于超分辨率增强网络的小目标检测系统的研究与实现(续)

由超分辨率模块生成的超分辨率图像SR已经对小目标的细节信息进行了补偿,可 在实际场景中,图像背景的颜色、噪声等也可能会影响检测器对小目标边缘的界定,从 而导致检测精度的下降。正因如此,本文拟对小目标的边缘再进行一次增强。为了防止 在边缘增强的同时对图像的非边缘部分产生影响,尽可能完美的提取图像边缘就显得尤 为重要。换言之,一个优秀的边缘检测算法将有效的提升模型的边缘增强效果。为了有效的抑制噪声和精准的定位图像中的边缘路径,本文分别对Sobel算子[26]、 Laplace算子[27]以及Canny算子[2

2025-03-21 00:30:00 78

原创 MATLAB基础应用精讲-【数模应用】基于动态扰动和惯性权重的改进布谷鸟算法求解目标问题(附MATLAB、C++和python代码实现)

单目标优化是通过改变一组自变量来最小化或最大化一个目标函数的问题。在实际应用中,我们经常需要解决单目标优化问题,例如参数优化、函数逼近等。布谷鸟算法(Cuckoo Search Algorithm)是一种启发式优化算法,模拟了布谷鸟的寄生习性以及布谷鸟蛋的扩散策略。它具有全局搜索能力和较好的收敛性,因此被广泛应用于优化问题。然而,传统的布谷鸟算法存在着一些问题,如局部最优解陷阱和收敛速度较慢等。为了提高布谷鸟算法的性能,本文引入了多阶段动态扰动和动态惯性权重的策略。

2025-03-21 00:30:00 75

原创 MATLAB基础应用精讲-【数模应用】多无人机目标搜索与围捕(附MATLAB、C++和python代码实现)

多架无人机组成无人机集群可以协同完成任务,是未来无人机的发展方向。组成无人机集群的多架无人机通过机间链路互相通信实现协作,可以迅速准确地执行路径规划、协同侦察、协同感知和协同攻击等复杂任务。为实现无人机集群协作的诱人前景,国内外都积极开展了相关研究工作。美国方面,美国国防预先研究计划局(DARPA)于2015年推出“小精灵”项目,计划研制具备自组织和智能协同能力的无人机蜂群系统。

2025-03-20 00:30:00 77

原创 目标检测YOLO实战应用案例100讲-高密度交通场景下智能汽车多目标检测与跟踪算法(续)

DeepSORT[ 64]匹配模型是目前应用范围最广的目标跟踪模型。由于DeepSORT算法不 仅保证了实时计算需要而且使用了外观特征数据进行关联,从而使其大幅降低了跟踪过 程中出现的身份ID切换次数。虽然DeepSORT算法在模型无法完成端到端的优化,降低 了使用的便捷性,但是由于其结构简单,便于使用者针对最终效果做特异性优化,例如 提升检测器性能或者微调跟踪器参数,因此DeepSORT算法广泛应用于魔门塔等智能车感 知系统中。

2025-03-19 00:30:00 188

原创 目标检测YOLO实战应用案例100讲-面向交通复杂目标场景的机器视觉检测技术研究(续)

本文实验中使用的车辆行人检测数据集为TID数据集,即交通路口数据集(Traffic  Intersection Dataset,简称TID),该数据集由两部分组成。 本文从网络公开图源上获取到一段交通路口监控视频,

2025-03-18 00:30:00 347

原创 目标检测YOLO实战应用案例100讲-基于毫米波雷达与摄像头协同的道路目标检测与识别(续)

通过上文对毫米波雷达原始数据进行3D-FFT和CFAR处理后,将会生成点 云数据和反映目标位置信息的距离-角度图。接下来通过对点云执行聚类算法获取 目标的中心位置,并以聚类后的结果为中心点,设置大小合适的边界框截取包含 目标信息的数据块,后续用于生成目标微多普勒时频图进行分类。其目标检测流 程如图3-6所示。 经过第二章的雷达原始回波数据处理流程后会生成被探测目标的点云数据, 其中包含了被探测目标的距离、角度及速度信息。由于本文是基于真实道路场景 下的目标识别,而道路环境的目标是处于运动中的,无法预测探测过

2025-03-17 00:30:00 465

原创 目标检测YOLO实战应用案例100讲-面向小样本的目标检测技术研究与应用

C2f,Concat,Conv,DWConv,SPPF,return x```---### 4. 训练函数```python# 加载配置文件# 初始化数据集和数据加载器dataset,# 初始化模型# 定义优化器和损失函数# 训练循环# 保存模型```---### 5. 数据增强策略Compose,Resize,Normalize,])```---### 6. 损失函数优化```python# 解析输出。

2025-03-16 00:30:00 61

原创 目标检测YOLO实战应用案例100讲-基于改进YOLOv5的水下群体目标检测 研究与实现(续)

水下环境中的目标检测面临诸多挑战,如目标模糊、光照不均匀、目标遮挡等。改进YOLOv5模型以适应这些挑战,可以显著提高检测的准确性和召回率。

2025-03-16 00:30:00 106

MATLAB算法实战应用案例精讲-【数模应用】-第十三届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十三届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB基础应用精讲-数模应用DTMF信号分析与仿真(附MATLAB GUI源码)

MATLAB基础应用精讲-【数模应用】DTMF信号分析与仿真(附MATLAB GUI源码)

2025-02-05

MATLAB基础应用精讲-数模应用基于BP神经网络的交通流量预测(附数据及MATLAB源码)

MATLAB基础应用精讲-【数模应用】基于BP神经网络的交通流量预测(附数据及MATLAB源码)

2025-02-05

MATLAB基础应用精讲-【智能优化算法】黏菌算法(SMA)(附MATLAB和python代码实现)

黏菌优化算法(Slime Mould Algorithm, SMA)是一种新兴的自然启发式优化算法,其灵感来源于黏菌(Slime Mould)的觅食行为。黏菌是一种简单的单细胞生物,以其高效的资源分配和路径选择能力闻名。研究人员观察到黏菌在寻找食物的过程中,能够动态调整其形态结构,以最小化能量消耗并优化食物获取,这为优化问题的求解提供了新的思路。

2025-01-10

MATLAB基础应用精讲-数模应用不确定多式联运路径优化问题(附MATLAB多种算法代码实现)

使用AFO算法以及其他GA和PSO算法求解不确定多式联运路径优化问题。同时和MATLAB自带的全局优化搜索器进行对比。 直接运行main.m 需要matlab2021及以后版本。 考虑不确定性的模糊多式联运路径优化研究,可以在满足运输方案经济环保双重要求的同时,增强运输 方案的鲁棒性,提高企业的抗风险能力。本文建立了模糊需求和模糊运输时间下低碳低成本多式联运路径优化模 型,针对连续型元启发式算法无法直接求解离散型组合优化模型的问题,设计了基于优先级的通用编码方式;在 此基础上,为进一步提高算法的求解质量,提出了带启发式因子的特殊解码方式。

2025-01-08

MATLAB基础应用精讲-数模应用数字预失真(DPD)(MATLAB实现源码)

MATLAB基础应用精讲-数模应用数字预失真(DPD)(MATLAB实现源码)

2025-01-06

MATLAB基础应用精讲-数模应用基于PCM编码QAM调制与解调仿真(附MATLAB源代码)

MATLAB基础应用精讲-数模应用基于PCM编码QAM调制与解调仿真(附MATLAB源代码)

2024-12-20

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算GR算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算GR算法MATLAB源代码

2024-12-16

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算CA算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算CA算法MATLAB源代码

2024-12-16

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算Itti算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算Itti算法MATLAB源代码

2024-12-16

数学建模基础应用精讲-数模应用禁忌搜索算法求解旅行商问题(附数据和C++源代码实现)

数学建模基础应用精讲-数模应用禁忌搜索算法求解旅行商问题(附数据和C++源代码实现)

2024-12-05

MATLAB基础应用精讲-数模应用图像修复-Criminisi算法MATLAB代码

订阅【数模应用】MATLAB基础知识详讲300篇(持续更新中)专栏的可联系博主要代码,没订阅的请直接购买。

2024-11-21

2024年高教社杯全国大学生数学建模竞赛-完整赛题及数据

2024年高教社杯全国大学生数学建模竞赛-完整赛题及数据

2024-09-06

目标检测YOLO实战应用案例100讲-目标检测YOLOV9论文及源代码

目标检测YOLO实战应用案例100讲-目标检测YOLOV9论文及源代码

2024-05-21

目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测

目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测

2024-05-11

目标检测YOLO实战应用案例100讲-红外弱小目标检测:IPI算法MATLAB代码实现

目标检测YOLO实战应用案例100讲-红外弱小目标检测:IPI算法MATLAB代码实现

2024-05-10

目标检测YOLO实战应用案例100讲-红外弱小目标检测

目标检测YOLO实战应用案例100讲-红外弱小目标检测

2024-05-10

目标检测YOLO实战应用案例100讲-基于yolov6的遥感影像目标识别

目标检测YOLO实战应用案例100讲-基于yolov6的遥感影像目标识别

2024-04-25

目标检测YOLO实战应用案例100讲-3D Lidar MOT 激光雷达点云 感知 多目标追踪

目标检测YOLO实战应用案例100讲-3D Lidar MOT 激光雷达点云 感知 多目标追踪

2024-04-19

目标检测YOLO实战应用案例100讲-激光雷达的3D目标检测

目标检测YOLO实战应用案例100讲-激光雷达的3D目标检测

2024-04-19

目标检测YOLO实战应用案例100讲-基于YOLOV3的显著性目标检测

目标检测YOLO实战应用案例100讲-基于YOLOV3的显著性目标检测

2024-04-18

目标检测YOLO实战应用案例100讲-基于yolo7的遥感目标检测

目标检测YOLO实战应用案例100讲-基于yolo7的遥感目标检测

2024-04-18

目标检测YOLO实战应用案例100讲-基于YOLOV5的深度学习卫星遥感图像检测与识别

目标检测YOLO实战应用案例100讲-基于YOLOV5的深度学习卫星遥感图像检测与识别

2024-04-18

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part1

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part1

2024-04-17

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part2

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part2

2024-04-17

目标检测YOLO实战应用案例100讲-yolo7实现遥感目标检测

目标检测YOLO实战应用案例100讲-yolo7实现遥感目标检测

2024-04-16

目标检测YOLO实战应用案例100讲-YOLOV4+DeepSort车流量检测

目标检测YOLO实战应用案例100讲-YOLOV4+DeepSort车流量检测

2024-04-16

目标检测YOLO实战应用案例-基于动态神经网络的目标检测

目标检测YOLO实战应用案例-基于动态神经网络的目标检测

2024-04-15

目标检测YOLO实战应用案例-基于点云数据的3D目标检测与跟踪

目标检测YOLO实战应用案例-基于点云数据的3D目标检测与跟踪

2024-04-15

MATLAB算法实战应用案例精讲-图像处理-FPGA 上使用 SVM 进行图像处理

MATLAB算法实战应用案例精讲-图像处理-FPGA 上使用 SVM 进行图像处理

2024-04-10

MATLAB算法实战应用案例精讲-爱情进化算法(LEA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-爱情进化算法(LEA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-角蜥优化算法(HLOA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-角蜥优化算法(HLOA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-鹦鹉优化器(PO)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-鹦鹉优化器(PO)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-优化算法正切搜索算法(FTTA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-优化算法正切搜索算法(FTTA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-【智能优化算法】基于人类行为的优化算法(HBBO)(附MATLAB源代码)

MATLAB算法实战应用案例精讲-【智能优化算法】基于人类行为的优化算法(HBBO)(附MATLAB源代码)

2023-12-12

MATLAB算法实战应用案例精讲-【智能优化算法】焦点群优化算法(FGOA)(附MATLAB源代码)

MATLAB算法实战应用案例精讲-【智能优化算法】焦点群优化算法(FGOA)(附MATLAB源代码)

2023-12-12

实战应用案例-实时车道线检测和智能告警(车道线检测 + 距离告警 + 转弯曲率半径计算)(附详细代码实现)

实战应用案例-实时车道线检测和智能告警(车道线检测 + 距离告警 + 转弯曲率半径计算)(附详细代码实现)

2023-12-06

MATLAB算法实战应用案例精讲-【数模应用】-第十四届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十四届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB算法实战应用案例精讲-【数模应用】-第十一届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十一届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB算法实战应用案例精讲-【数模应用】-第十二届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十二届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除