关于贝叶斯~

你参加电视台的一个抽奖节目。台上有三个门,一个后边有汽车,其余后边是山羊。主持人让你任意选择其一。然后他打开其余两个门中的一个,你看到是山羊。这时,他给你机会让你可以重选,也就是你可以换选另一个剩下的门。那么,你换不换?
  
  
  
  
  这道题目的标准答案是换选二号门。
  
  (一)条件概率:全概率和贝叶斯公式解
  
  游戏开始,设P(X)为A、B、C三道门后面有车的概率,则P(A)=P(B)=P(C)=1/3
  假定:游戏者任选了一道门A,而主持人(HOST)打开一道后面是羊的门,事实上有两种情况。
  
  1. 主持人了解所有门后面的东东,他一定要打开一扇“羊”门
  如果车在A门后面,主持人有B、C两种选择,打开C门(“羊”门)的概率为
  P(Host opens C|A) = 1/2
  如果车在B门后面,主持人没有选择,只能打开C门
  P(Host opens C|B) = 1
  如果车在C门后面,主持人一样没得选择,绝对不能开C门
  P(Host opens C|C) = 0
  
  所以,主持人打开C门的概率为
  P(Host opens C) = P(A)*P(H.o. C|A) + P(B)*P(H.o. C|B) + P(C)*P(H.o. C|C)
  = 1/6 + 1/3+ 0 = 1/2
  
  根据贝叶斯公式,在主持人打开C门的条件下,A、B两门后面是车的概率分别为
  P(A|Host opens C) = P(A)*P(Host opens C|A) / P(Host opens C)
  = (1/6) / (1/2)
  = 1/3
  P(B|Host opens C) = P(B)*P(Host opens C|B) / P(Host opens C)
  = (1/3) / (1/2)
  = 2/3
  这就是为什么要换二号门的原因。
  
  2. 主持人和游戏者一样蒙在鼓里,他是碰巧打开一扇“羊”门,那么
  如果车在A门后面,主持人有B、C两种选择,打开C门的概率为
  P(Host opens C|A) = 1/2
  如果车在B门后面,主持人一样有B、C两种选择,打开C门的概率还是
  P(Host opens C|B) = 1/2
  如果车在C门后面,主持人还是有B、C两种选择,只是打开C门不可能看到羊
  P(Host opens C|C) = 0
  
  所以,主持人打开C门见到羊的概率为
  P(Host opens C) = P(A)*P(H.o. C|A) + P(B)*P(H.o. C|B) + P(C)*P(H.o. C|C)
  = 1/6 + 1/6+ 0 = 1/3
  
  根据贝叶斯公式,在主持人打开C门见到羊的条件下,A、B两门后面是车的概率分别为
  P(A|Host opens C) = P(A)*P(Host opens C|A) / P(Host opens C)
  = (1/6) / (1/3)
  = 1/2
  P(B|Host opens C) = P(B)*P(Host opens C|B) / P(Host opens C)
  = (1/6) / (1/3)
  = 1/2
  在这种情况下,用一个简单的条件概率式P(A|C.sheep)一样可以得出1/2的结果。这就是“
  不换”的原因。遗憾的是,从游戏的设置来看,主持人不知情的可能性很小。
  
  (二) 另一种思路,玛丽莲问题的拓展
  
  在三道门的玛丽莲问题中,对游戏者的策略进行观察,他要赢得汽车,可以通过如下途径
  :
  1.第一次选错,主持人打开一道门之后换选
  第一次选错的概率为2/3,然后,换选选对的概率为100%,就是说,第一次选择之后再换选
  ,得奖得概率为2/3*100%=2/3
  2.第一次选对,主持人打开一道门之后不换。
  第一次选对的概率为1/3,不换则得奖率100%。1/3*100%=1/3就是“不换”策略的胜算。
  
  这个方法可以推广到三道门以上的玛丽莲问题拓展,譬如,在四道门的游戏里,主持人依
  次打开两扇“羊门”,每一次游戏者都有权选择“换”或者“不换”。游戏共有三个步骤
  ,步骤一是“初选”,在步骤二和步骤三,分别有“不换——不换”、“不换——换”、
  “换——不换”和“换——换”四种策略组合,中奖可能分别为:
  1/4
  3/4
  (3/4)*(1/2)=3/8
  1/4(换两次之后换回初选的得奖率)+(3/4)*(1/2)(换两次之后不换回初选)=5/8
  可见,选择“不换——换”得策略最有利。
  由此可以推广到N道门的游戏中,游戏者最有利的对策是一直坚持不换,直到只剩两扇门还
  没有打开时再换。
  
  上述证明参考自芝加哥大学(UCHICAGO)网页上的解法

关于贝叶斯定理,其最初的证明是由英国数学家、牧师Thomas Bayes在18世纪提出的,但该证明并未被他本人发表。直到20世纪50年代,英国统计学家Dennis V. Lindley在整理Bayes的手稿时才发现了这个证明,故而被命名为贝叶斯定理。 贝叶斯定理是指在给定某一条件下,根据新的信息来更新已有的假设的概率。它的数学表示为P(A|B) = (P(B|A) * P(A)) / P(B),其中P(A)和P(A|B)分别表示事件A的先验概率和后验概率,P(B|A)表示在事件A发生的前提下事件B的条件概率,P(B)为事件B的概率。 2006年,关于贝叶斯证明的论文由统计学家David Bishop在《Pattern Recognition and Machine Learning》一书中发表。这篇论文提供了更为详细和系统的贝叶斯证明。 Bishop的论文首先从条件概率的定义出发,利用全概率公式以及条件概率的性质,推导出贝叶斯定理。接着,借助贝叶斯定理,他针对不同情形提供了几个具体的证明例子,并以此解释了贝叶斯定理在模式识别与机器学习中的应用。 Bishop的证明方法非常清晰简洁,将贝叶斯定理的推导过程展示得易于理解。他的证明指导我们在实际问题中如何运用贝叶斯定理来更新概率,从而对现象进行解释和预测。 总的来说,Bishop于2006年的贝叶斯证明论文对于推动贝叶斯定理在机器学习和模式识别领域的应用起到了重要的作用。它不仅详细阐释了贝叶斯定理的意义和应用场景,同时也将其数学证明过程清晰地呈现给读者,使更多人能够理解和运用这一重要的统计学定理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值