用贝叶斯公式解决开奖问题

本文介绍了砸金蛋活动中如何利用贝叶斯公式来计算在已知一个金蛋无奖的情况下,大奖在剩余金蛋中的概率,以此决定是否更换选择。通过计算得出,在主持人打开无奖金蛋C后,更换选择金蛋A赢的机会更大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题描述

砸金蛋活动,现有三个金蛋A、B、C,其中只有一个有大奖,假设你一开始选择了金蛋B,主持人砸开了金蛋C,里面没有奖,主持人此时问你是否要更换选项,是继续坚持选择金蛋B,还是更改为选择金蛋A?

二、用贝叶斯公式求解

贝叶斯公式:  P(x|y)=\tfrac{P(y|x)P(x)}{P(y)}

(1)  首先,利用贝叶斯公式计算在C开了的情况下,大奖在B里的概率

\large P(B|C{open})=\tfrac{P(C{open}|B)P(B))}{P(C{open})}=\tfrac{P(C{open}|B)P(B))}{P(C{open}|A)P(A)+P(C{open}|B)P(B)}

我们设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值