【算法】归并排序

归并排序
采用分治(Divide and Conquer)思想。
主要思想:将数组分成两部分,如果这两部分均有序,那么便可在O(n)的时间内合并成一个完整的有序数组。

以此类推将区间划分下去,直到每个区间只有一个元素,即可认为已经有序,然后两两合并。


T(n)=T(n/2)+O(n)  其中O(n)是合并两个有序数组产生的。

求解递归式可得归并排序的时间复杂度为T(n)=O(nlgn) 

归并排序是一种稳定的排序算法

归并排序主要在于合并过程,合并两个有序数组的过程如下

public int[] merge(int[] a, int[] b) {
		int[] result = new int[a.length + b.length];
		int i = 0, j = 0, k = 0;
		while (i < a.length && j < b.length) {
			if (a[i] <= b[j]) {
				result[k++] = a[i++];
			} else {
				result[k++] = b[j++];
			}
		}
		while (i < a.length) {
			result[k++] = a[i++];
		}
		while (j < b.length) {
			result[k++] = b[j++];
		}
		return result;
	}
归并排序的关键代码

public void sortMerger(int[] a, int p, int q) {
		if (p < q) {
			int r = (q + p) / 2;
			sortMerger(a, p, r);
			sortMerger(a, r + 1, q);
			merge(a, p, r, q);
		}
	}
merge过程和上面一模一样,即为合并两个有序数组。这里下标从p--->r 和 r+1--->q 就是两个均已按照由小到大顺序排好的数组
private void merge(int[] a, int p, int r, int q) {
		int size = q - p + 1;
		int arr[] = new int[size];
		int i = p, k = 0;
		int j = r + 1;
		while (i <= r && j <= q) {
			if (a[i] <= a[j]) {
				arr[k++] = a[i++];
			} else {
				arr[k++] = a[j++];
			}
		}
		while (i <= r)
			arr[k++] = a[i++];
		while (j <= q)
			arr[k++] = a[j++];
		// 数组arr[]里面已经保存了排好序的元素
		for (int x = 0; x < q - p + 1; x++) { // q-p+1 == size
			a[p + x] = arr[x];
		}
	}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值