HDU 2829 Lawrence(四边形不等式优化DP)

题目链接:点击打开链接

题意:铁路上有n个站点,每个站可以往其他站运送粮草,现在要炸掉m段铁路(两个站点之间为一段)使得粮草补给之和最小,剩余每块连通铁路的粮草补给Strategic Value计算方法见题目,不再累赘。

思路:动态规划问题,用dp[i][j]表示前j个站点炸掉i段得到的最小值。

状态转移方程与前篇POJ 1160 Post Office问题类似:dp[i][j] = min(dp[i - 1][k] + cost[k + 1][j]),i < j且<= k < j,表示前k个站点炸掉i - 1段,第k个站点与第k + 1个站点之间的铁路炸掉,cost[u][v]表示在连通的前提下,第u个点到第v个点之间的相应Strategic Value。时间复杂度为:O(M*N^2),由于此题数据规模为10^3,肯定会超时,这样就不能按照POJ 1160一样没有优化了。

此题用到的为四边形不等式优化dp,先介绍一下。

在动态规划中,经常遇到如下形式的状态转移方程:

dp[i][j] = min/max(dp[i][k - 1],dp[k][j])+ cost[i][j],i < j且i < k ≤ j,时间复杂度为O(N ^ 3)

上述的dp[i][j]表示某种方案下的最优值,cost[i][j]表示在转移时需要额外付出的代价。

且有如下一些定义、定理:

(1)四边形不等式
如果一个函数cost[i][j],满足 cost[i][j] + cost[i'][j'] <= cost[i][j'] + cost[i'][j],i <= i' < j <= j',则称cost满足凸四边形不等式。(可以形象的理解为两个交错区间的cost的和不超过小区间与大区间的cost的和)
(2)区间包含的单调性
如果一个函数cost[i][j],满足 cost[i'][j] <= cost[i][j'],i <= i'< j <= j' 则称cost关于区间包含关系单调。(可以形象的理解为如果小区间包含于大区间中,那么小区间的cost不超过大区间的cost)

定理1:如果cost同时满足四边形不等式和区间单调关系,则dp也满足四边形不等式。

我们再定义K[i][j]表示dp[i][j]取得最优值时对应的下标(即当i < k ≤j 时,若k处的dp值为最优值,则K[i][j] = k)。此时有如下定理

定理2:假如dp满足四边形不等式,那么K单调,可以表示为K[i][j-1] <= K[i][j] <= K[i+1][j]或者K[i - 1][j] <= K[i][j] <= K[i][j + 1]等,此处可以根据需要表示,只要符合K单调即可。

定理2是四边形不等式优化的关键所在,它说明了决策具有单调性,然后我们可以据此来缩小决策枚举的区间,进行优化。
定理3:cost为凸当且仅当 cost[i][j] + cost[i+1][j+1] <= cost[i+1][j] + cost[i][j+1]。

几点说明:
1:相关证明数学性较强,资质有限,不再详述。
2:其实定理3告诉我们了验证cost是否满足凸四边形不等式的一个简单方法,一方面i'具体为i + 1、j'具体为j + 1,另一方面,我们具体判断时可以进行式子变形,然后固定一个变量,看成是一个一元函数,进而判断单调性,具体如,我们可以把原式cost[i][j] + cost[i'][j'] <= cost[i][j'] + cost[i'][j]变形为cost[i + 1][j + 1] - cost[i + 1][j] <= cost[i][j + 1] - cost[i][j],然后固定j,看coat[i][j+1] - cost[i][j]是关于i递增还是递减,如果是递减,则cost为凸。
3:根据dp方程的形式以及cost函数是否满足两条性质即可考虑使用四边形不等式优化。实际操作中,大多并不需要证明,只需要打表,然后观察cost[i][j]是否满足四边形不等式、是否单调即可。

优化后的状态转移方程可以写为:dp[i][j] = min/max(dp[i][k - 1],dp[k][j])+ cost[i][j],i < j且K[i][j-1] <= k <= K[i+1][j]或者K[i - 1][j] <= k <= K[i][j + 1]等,时间复杂度为O(N ^ 2)。

再回来看此题,dp[i][j] = min(dp[i - 1][k] + cost[k + 1][j]),i < j且i <= k < j,和上面的式子很相似,那么cost[i][j]满足两个性质吗?因为都是正数,区间越大,相乘项越多,所以区间包含单调性显而易见;四边形不等式性质不易推导,不过经打表可以看出单调性,所以四边形不等式优化适用此题。

// HDU 2829 Lawrence 运行/限制:171ms/1000ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long
LL value[1005];
LL sum[1005];//前缀和,用于计算cost
LL cost[1005][1005];//cost[i][j]为从i站台到j站台铁路之间的Strategic Value
LL dp[1005][1005];
int s[1005][1005];
int main(){
	int n, m;
	while (scanf("%d%d", &n, &m) != EOF && n && m) {
		memset(sum, 0, sizeof(sum));
		memset(cost, 0, sizeof(cost));
		for (int i = 1; i <= n; i++) {
			scanf("%lld", &value[i]);
			sum[i] = sum[i - 1] + value[i];//计算前缀和
		}
		for (int i = 1; i < n; i++) {
			for (int j = i + 1; j <= n; j++) {
				cost[i][j] = cost[i][j - 1] + (sum[j - 1] - sum[i - 1]) * value[j];//计算cost
			}
		}
		/*
		固定j为n - 1,得到cost[i][j + 1] - cost[i][j]随i单减,满足凸四边形不等式;
		for (int i = 1; i <= n; i++) {
			printf("%d\n", cost[i][n] - cost[i][n - 1]);
		}
		又很容易看出cost关于区间包含关系单调,所以四边形不等式优化dp适用。
		*/
		memset(dp, INF, sizeof(dp));
		for (int i = 1; i <= n; i++) {//先预处理一些边界值
			dp[0][i] = cost[1][i];
			s[0][i] = 1;
			s[i][n + 1] = n - 1;
		}
		//以下的循环体,当i = 1或者j = n时为边界,上面循环体内就是为了处理这些边界
		for (int i = 1; i <= m; i++) {//attack的数量
			for (int j = n; j > i; j--) {//1~j的站台;j要大于i
				for (int k = s[i - 1][j]; k <= s[i][j + 1]; k++) {//单调性
					if (dp[i][j] > dp[i - 1][k] + cost[k + 1][j]) {
						dp[i][j] = dp[i - 1][k] + cost[k + 1][j];
						s[i][j] = k;
					}
				}
			}
		}
		printf("%lld\n", dp[m][n]);
	}
    return 0;
}

POJ 1160也可以利用四边形不等式优化,只不过因为数据范围较小,无优化必要。


初学四边形不等式优化dp算法,相关思路参考自:

点击打开链接

点击打开链接

在此谢过!!!

### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值