入门笔记:动态规划之四边形不等式优化(一)

本文介绍了动态规划中四边形不等式优化的概念,包括适用场合、使用条件和优化方法。通过石子合并模型和序列分段问题阐述了两种转移状态,并详细讲解了四边形不等式和单调性的应用。此外,还提供了两个例题来说明如何在实际问题中应用这种优化,分别是石子合并问题和Lawrence问题的解决过程。
摘要由CSDN通过智能技术生成

2023大厂真题提交网址(含题解):

www.CodeFun2000.com(http://101.43.147.120/)

最近我们一直在将收集到的机试真题制作数据并搬运到自己的OJ上,供大家免费练习,体会真题难度。现在OJ已录入50+道2023年最新大厂真题,同时在不断的更新。同时,可以关注"塔子哥学算法"公众号获得每道题的题解。
在这里插入图片描述

0.前言:

大概大一下学期还是啥时候就听说过这个优化了。现在都大三下了才正式开始学这东西,哈哈,太垮了.这里只记录结论和如何使用。不说证明(也看不懂.

1.使用场合:

优化转移:
1. d p ( i , j ) = m i n { d p ( i , k ) + d p ( k , j ) + w ( i , j ) } dp(i,j)=min\{dp(i,k)+dp(k,j)+w(i,j)\} dp(i,j)=min{ dp(i,k)+dp(k,j)+w(i,j)}
2. d p ( i , j ) = m i n { d p ( i − 1 , k − 1 ) + w ( k , j ) } dp(i,j)=min\{dp(i-1,k-1)+w(k,j)\} dp(i,j)=min{ dp(i1,k1)+w(k,j)}

解释: d p ( i , j ) dp(i,j) dp(i,j)是区间形式且他们存在着一个最优决策点 k k k使得 d p ( i , j ) dp(i,j) dp(i,j)取最小值.

第一种转移:石子合并模型
第二种转移:将长度为 n n n的序列分成 m m m段,求最小值.

2.使用条件:

w ( i , j ) w(i,j) w(i,j)满足 四边形不等式以及单调性 能够推出 d p ( i , j ) dp(i,j) dp(i,j)也满足.

在这里插入图片描述

2.1:四边形不等式:两个交错区间的 w w w和,小于等于 小区间与大区间的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值