简单树形dp-poj-1655-Balancing Act

该博客介绍了如何使用简单树形动态规划(DP)解决POJ-1655问题,即在给定树结构中找到删除一个节点后,形成的子树中最大节点数的最小值。解题策略包括两遍深度优先搜索(DFS),首先计算每个节点的最大分支节点数和子树总节点数,然后确定最优删除节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:

http://poj.org/problem?id=1655

题目意思:

给一棵树,求去掉一个节点,形成的多棵树中节点数的最大值最小。

解题思路:

简单树形dp.

dp[i]表示儿子中节点数最多的分支节点数。

sum[i]表示i为根的子树节点总数。

第一遍dfs求出dp和sum,第二遍dfs枚举去掉的节点,max(dp[cur],from)  //from表示从父亲方向过来节点数,向下的时候from+sum[cur]-sum[v].

代码:

#include <iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define INF 0x3f3f3f3f
using namespace std;

#define Maxn 21000

int dp[Maxn],cnt,n,nuans,node;
int sum[Maxn];

struct Edge
{
    int v;
    struct Edge * next;
}edge[Maxn<<1],*head[Maxn<<1];

void add(int a,int b)
{
    ++cnt;
    edge[cnt].v=b;
    edge[cnt].next=head[a];
    head[a]=&edge[cnt];
}

void dfs1(int cur,int fa)
{
    struct Edge * p=head[cur];
    dp[cur]=0;
    sum[cur]=1;

    while(p)
    {
        int v=p->v;

        if(v!=fa)
        {
            dfs1(v,cur);
            dp[cur]=max(dp[cur],sum[v]);//表示节点数最多的儿子分支
            sum[cur]+=sum[v]; //以该点为根的子树的总的节点数
        }
        p=p->next;
    }
}

void dfs2(int cur,int fa,int from)
{
    struct Edge * p=head[cur];

    //if(dp[cur]&&from)
    int tt=max(dp[cur],from);
    if(tt<nuans)
    {
        nuans=tt;
        node=cur;
    }
    else if(tt==nuans&&cur<node)
        node=cur;

    while(p)
    {
        int v=p->v;

        if(v!=fa)
            dfs2(v,cur,from+sum[cur]-sum[v]); //from表示父亲方向节点总数
        p=p->next;
    }

}

int main()
{
    int t;

    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);

        memset(head,NULL,sizeof(head));
        cnt=0;

        for(int i=1;i<n;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            add(a,b);
            add(b,a);
        }
        dfs1(1,-1);
       /* for(int i=1;i<=n;i++)
            printf("i:%d %d %d\n",i,dp[i],sum[i]);*/
        nuans=INF;
        dfs2(1,-1,0);
        printf("%d %d\n",node,nuans);
    }
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值