题目链接:
Root | |
Regionals 2006 >> Asia - Beijing 3667 - RulerTime limit: 3.000 seconds |
题目意思:
有n个长度需要量,问怎样设计尺子刻度,使得每个长度都在两个刻度之间。在满足刻度数最小的情况下,要求尺子长度越短越好,最开始的刻度为0.
解题思路:
dfs
由于最多的刻度是7,而且可以计算出最小的刻度数,因为当刻度数m确定后,最多能够测量的长度数是固定的C(m,2).
要满足刻度最少且长度最短,可以假设最后一个刻度在长度最长的位置。
然后递增暴搜。
代码:
//#include<CSpreadSheet.h>
#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#include<cmath>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define Maxn 55
#define Maxm 1100000
int hav[Maxm],sa[Maxn],n,ans;
bool vis[Maxn];
int dis[Maxn];
bool dfs(int cur)
{
if(cur==ans)
{
for(int i=1;i<n;i++) //前n-1个长度都能够测量
if(!vis[i])
return false;
return true;
}
for(int i=1;i<cur;i++)
{
for(int j=1;j<n;j++)
{
if(!vis[j])
{
int dd=dis[i]+sa[j];//当前刻度
if(dd<=dis[cur-1]) //比之前大
continue;
if(dd>=sa[n])//要比最大小
continue;
dis[cur]=dd;
queue<int>myq; //记录标记的长度,回溯时返回
for(int k=1;k<cur;k++) //加入当前刻度后,新增的能够出的长度
{
int temp=dis[cur]-dis[k];
if(hav[temp]&&!vis[hav[temp]])
{
vis[hav[temp]]=true;
myq.push(hav[temp]);
}
}
int la=sa[n]-dis[cur]; //最后一段
if(hav[la]&&!vis[hav[la]])
{
vis[hav[la]]=true;
myq.push(hav[la]);
}
if(dfs(cur+1))
return true;
while(!myq.empty())
{
la=myq.front();
myq.pop();
vis[la]=false;
}
}
}
}
return false;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int cas=0;
while(~scanf("%d",&n)&&n)
{
for(int i=1;i<=n;i++)
scanf("%d",&sa[i]);
sort(sa+1,sa+n+1);
n=unique(sa+1,sa+n+1)-sa-1;
memset(hav,0,sizeof(hav));
for(int i=1;i<=n;i++)
hav[sa[i]]=i;
dis[1]=0;
ans=2;
while(ans*(ans-1)/2<n)
ans++;
memset(vis,0,sizeof(vis));
while(!dfs(2))
ans++;
printf("Case %d:\n%d\n",++cas,ans);
printf("%d",dis[1]);
dis[ans]=sa[n];
for(int i=2;i<=ans;i++)
printf(" %d",dis[i]);
putchar('\n');
}
return 0;
}