第三届华中区全国程序设计大赛暨武大校赛网赛

本文介绍了第三届华中区全国程序设计大赛中的三道题目,涉及石头堆问题的策略优化。第一题通过枚举策略求最大石头a值之和;第二题采用动态规划与贪心策略解决,根据b值排序选择最优;第三题利用矩阵快速幂计算斐波那契数列的前n项立方和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷首语:

好长时间没敲题,太水了。。。。思维慢死了。。。。


Problem 1537 - A - Stones I

题目链接:

http://acm.whu.edu.cn/land/problem/detail?problem_id=1537

题目意思:

有n堆石头,第i堆有ai和bi属性,每次拿一堆(假设第i堆)后,所有的石头的a值都减去bi.求最后拿到的a的和的最大值。

解题思路:

枚举。

题目本质意思就是求拿了m堆后 sigma(a)-m*sigma(b)的最大值。枚举m,按ai-m*bi排序,求出前面的m个和,再比较求出最大值。

代码:

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;

#define Maxn 1100

struct Node
{
    ll a,b,v;
}t1[Maxn];
ll n,ans;

bool cmp(struct Node a,struct Node b)
{
    return a.v>b.v;
}

ll MM(ll a,ll b)
{
    return a>b?a:b;
}

int main()
{
    while(scanf("%lld",&n)&&n)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%lld%lld",&t1[i].a,&t1[i].b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值