1. lower_bound 指的是 返回第一个 ”大于等于 value“ 的元素位置。
另一种解释是 可插入”元素值为 value“且 ”不破坏有序性“的 第一个 位置
2. upper_bound 指的是 返回第一个 “大于 value ” 的元素位置;
另一种解释是 可插入”元素值为 value“且 ”不破坏有序性“的 最后一个 位置
举个例子: 1 2 2 3 4 5
value = 2: 则 lower_bound 返回的位置是 第 1 个位置;(从第0个位置开始)
upper_bound 返回的位置是 第 3 个位置。
大家可以看到一个很有意思的性质:
upper_bound - lower_bound = 数组中 value 的个数
下面我们来研究下 lower_bound 和 upper_bound 的实现。
先看普通的二分查找
int binSearch(int* array ,int x,int head,int tail){ //循环版本
while(head<=tail){
int mid=(head+tail)/2;
if(List[mid]==x)
return mid;
else if(List[mid]>x){ //注意别写反
tail=mid-1;
}
else{
head=mid+1;
}
}
return -1;
}
lower_bound 返回大于等于给定key值的位置。
不断二分,右边界(last)找到大于等于key值的最左边的位置,用左边界(first)不断向右边界逼近。
int mylower_bound(int* array ,int size,int key){
int first = 0, middle ,last = size-1;
while(first<last){
middle = (first+last) >> 1;
if(array[middle] <key ) //当middle小于要找的位置 , first +1 也不会超过key的位置,最多相同
first = middle + 1;
else
last = middle ; //middle有可能等于要找的位置 , last = middle , 用first不断逼近
}
return first;
}
upper_bound 返回大于给定key值的位置。
注意与lower_bound的不同。不断二分,右边界(last)找到最靠左的比key值大的位置,用左边界(first)不断向右边界逼近。
int myupper_bound(int* array ,int size,int key){
int first = 0, middle ,last = size-1;
while(first<last){
middle = (first+last) >> 1;
if(array[middle] >key ) //此时的middle一定大于要找的位置。用first不断逼近
last = middle ;
else
first = middle +1; //当middle等于要找的位置, 我们记录first = middle+1
}
return first;
}
STL 源码
这个算法中,first是最终要返回的位置
int lower_bound(int *array, int size, int key)
{
int first = 0, middle;
int half, len;
len = size;
while(len > 0) {
half = len >> 1;
middle = first + half;
if(array[middle] < key) {
first = middle + 1;
len = len-half-1; //在右边子序列中查找
}
else
len = half; //在左边子序列(包含middle)中查找
}
return first;
}
int upper_bound(int *array, int size, int key)
{
int first = 0, len = size-1;
int half, middle;
while(len > 0){
half = len >> 1;
middle = first + half;
if(array[middle] > key) //中位数大于key,在包含last的左半边序列中查找。
len = half;
else{
first = middle + 1; //中位数小于等于key,在右半边序列中查找。
len = len - half - 1;
}
}
return first;
}