关闭

贪婪算法

3577人阅读 评论(1) 收藏 举报
分类:

0) 引论

贪婪算法是分阶段进行的一种算法,每一个阶段,我们只取最好的决策,而不管以后。贪婪算法是“take what you can get now”策略。

贪婪算法的结果一般会取到的是局部最优值而非全局最优的,一般情况下这两个值是不相等的,但是很多情况下,可以用局部最优值来模拟近似全局最优值。

常用的图论中的Dijkstra算法以及Kruskal算法都利用了贪婪算法的思想。

贪婪算法的一个典型例子是零钱兑换:

假设需要兑换16快钱的零钱,同时假设货币有10元,5元,1元的,同时我们定义钱的个数第为优,那么利用贪婪算法的兑换结果为一个10元,一个5元,一个1元,这个是全局最优解。但是假设货币有12元,10元,5元,1元的,那么利用贪婪算法的兑换结果为一个12元,四个1元,这个就不是最优解了,最优解仍是一个10元,一个5元,一个1元。

因此我们可以看到贪婪算法是无法保证最优解的,它只是提供了一个分段解决问题的思想,得到的结果只是局部最优。


1) 简单的调度问题

假设一个单核CPU有下面的4个任务,现在求这四个任务的平均完成时间。


一种方法是上面的Schedual #1,也就是按照Job的先后顺序来工作,那么平均完成时间为(15+(15+8)+(15+8+3)+(15+8+3+10))/4 = 25.

而一种方法是上面的Schedual #2,也就是先处理时间小的Job,那么平均完成时间为(3+(3+8)+(3+8+10)+(3+8+10+15))/4 = 17.75.

Schedual #2就是一种贪婪算法,每一个阶段只处理最好的值,在这里就是运行时间最短。这里贪婪算法能够取得最好的结果


2) 多线程调度问题

假设我们有多个CPU,同时进行以下的任务,要求这些任务的平均完成时间。


图中的方案就是根据贪婪算法得到的最优的解决方案,可以看到每个CPU按照最短的完成时间来进行任务分配。


3) 最快完成时间

针对上面的多线程任务问题,这里假设我们变更要求,要得到最快完成时间,即求所有任务完成需要的时间。

可以得到下面的最优结果


其实这个问题是一个NP-Complete问题,利用贪婪算法很难得到一个最优的结果。这里只是因为例子较少,所以我们可以得到最优结果,但是当例子个数增加时,很难得到结果的。

当然对于这一问题,贪婪算法提供了解决方案,但是解决方案并不是最优的。下面我们来看看这一解决方案


4) 集装箱问题

我们通过一个集装箱问题来介绍贪婪算法在上面问题的解决方案。

假设我们有一些包裹,他们的大小分别为2,5,4,7,1,4,8 。我们有N个箱子,每个箱子的大小为10,那么问题是要装下这些包裹需要多少个箱子。

我们可以通过观察得到下面的装箱结果:


可惜计算机不是人类,同时当包裹的数量增长到一定量时,我们也很难通过观察在较短时间内得到结果。因此我们要找到较好的算法解决这一问题。

对于这一问题,有两种情况,一种是on-line的情形,一种是off-line的情形。

a) on-line算法

on-line算法是指来一个包裹我们就要处理一个包裹,我们没法得知后面的包裹的信息。

对于on-line算法,是没有最优算法的。对于on-line算法,一般有3中解决方案

aa)Next-Fit

思想是:对于每一个包裹,如果现在的箱子放不下了,那么就放到一个新的箱子里。

结果如下图所示,我们可以看到这个结果相当不优。


bb)First-Fit

思想是:对于每一个包裹,搜索前面的箱子,把包裹放到第一个能够容纳的箱子里,如果现有的所有箱子都放不下了,那么就放到一个新的箱子里。

结果如下所示,较Next-Fit算法,效果更好一点。


cc)Best-Fit

思想是:对于每一个包裹,搜索前面的箱子,把包裹放到能够最紧凑的容纳的箱子里,如果现有的所有箱子都放不下了,那么就放到一个新的箱子里。

结果如下所示,Best-Fit可以得到更加紧凑的结果。这也应该是on-line算法的最佳选择。



b) off-line算法

off-line算法是指来我们可以在处理包裹前看到所有的包裹信息,然后在对其处理。

我们可以用穷举法得到最优的方案,但是那样太过耗时,尤其是当包裹量很大时,因此我们需要更好地的算法。

这里我们可以首先按照包裹的大小排序,然后再应用上面的First-Fit或者Best-Fit算法。

在实际中First-Fit一般能够取得很好的效果,对上面的例子,可以得到








0
2

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:224272次
    • 积分:2366
    • 等级:
    • 排名:第16343名
    • 原创:66篇
    • 转载:7篇
    • 译文:0篇
    • 评论:46条
    文章分类
    最新评论