adaboost提升算法

引言

俗话说得好,三个臭皮匠赛过诸葛亮。更主要的是三个臭皮匠好找,一个诸葛亮太难找了。在机器学习里面也是一样的。我们可以设计出各种分类器,然而分类器的效果确实不一而同的,相对而言,效果较差的分类器比效果很好的分类器更好设计,后者很多时候可遇而不可求。那么是否有什么方法能够将一系列的弱分类器组合,使其能够提示分类效果呢?这就是机器学习里面的提升学习。而且后来Schapire证明强可学习与弱可学习是等价的,这个就很完美了,这样我们就有了理论指导,通过一系列的弱学习算法可以提升为强学习算法,adaboost就是最重要的一个例子。

提升算法的思想

提升算法通过提高前面分类错误的样本的权重,是后面的分类器更加关注这些错误样本的分类,进而能够分而治之,使分类器重点关注不同的样本。

adaboost算法

下面我们先来介绍adaboost算法,后面再对算法做推导解释。(猜想adaboost算法应该是先提出的算法,后续才找个合理的解释。)

输入

  • 训练数据集 D={(x1,y1),...,(xN,yN)} D = { ( x 1 , y 1 ) , . . . , ( x N , y N ) }
  • 弱学习算法

算法过程


  • 初始化训练数据的权值分布为 W1=(w11,...,w1N) W 1 = ( w 11 , . . . , w 1 N ) 其中 W1i=1N W 1 i = 1 N
  • 进行迭代训练,即对 m=1,2,...,M m = 1 , 2 , . . . , M

  • 使用权重为 Wm W m 的训练数据训练学习器 Gm(x) G m ( x )
  • 计算 Gm(x) G m ( x ) 上的训练误差率 em=P(Gm(xi)yi)=Ni=1wmiI(Gm(xi)yi) e m = P ( G m ( x i ) ≠ y i ) = ∑ i = 1 N w m i I ( G m ( x i ) ≠ y i )
  • 计算 Gm(x) G m ( x ) 的系数 αm=12log1emem α m = 1 2 l o g 1 − e m e m
  • 更新训练集的权重 Wm+1=(wm+1,1,...,wm+1,N) W m + 1 = ( w m + 1 , 1 , . . . , w m + 1 , N ) 其中 wm+1,1=xmiZmexp(αmyiGm(xi)) w m + 1 , 1 = x m i Z m e x p ( − α m y i G m ( x i ) ) ,其中 Zm Z m 是规范化因子,即 Zm=Ni=1wmiexp(αmyiGm(xi)) Z m = ∑ i = 1 N w m i e x p ( − α m y i G m ( x i ) )
  • 构建分类器的线性组合 f(x)=Mm=1αmGm(x) f ( x ) = ∑ m = 1 M α m G m ( x )
  • 得到最终的分类器为 G(x)=sign(f(x))=sign(Mm=1αmGm(x)) G ( x ) = s i g n ( f ( x ) ) = s i g n ( ∑ m = 1 M α m G m ( x ) )

输出

  • 最终的分类器 G(x) G ( x )

算法很简单也很好理解,同时很好用,而且效果确实很好,这就够了。

本质上讲权重在 em e m 出影响了分类器的选择,进而影响了数据分布,在这里将去权重间接的引入到了数据集中,影响了训练数据的分布。在一些书中说通过改变权重影响训练数据集的分布,其实就是这个意思,并不是真的修改了数据集的分布,而是通过误差率选择了分类效果最好的学习器,使分类器能够偏向去正确分类之前错误分类的数据。

过拟合

有了算法,那么还有一个问题,就是算法的过拟合问题。adaboost有很强的抗过拟合能力,然而很遗憾的是,针对adaboost问题的抗过拟合原因,至今没有一个比较完美的解释,虽然大牛们做了很多工作,但是依旧还是有很大的困难。一种猜想是通过多种分类器的组合,天然的引入了多样性,使算法不易过拟合。

算法解释

上面我们提出了算法,这里我们尝试利用数学推导来解释一下为什么adaboost这样设计是合理的。

对于adaboost可以理解为算法模型为加法模型,损失函数为指数函数,学习算法为前向分步算法时的二分类学习算法

给定加法模型 f(x)=Mm=1βmb(xi,γm) f ( x ) = ∑ m = 1 M β m b ( x i , γ m ) ,损失函数为 L(x,f(x)) L ( x , f ( x ) ) ,则问题转化为最小化损失函数,即 minβm,γmNi=1L(yi,Mm=1βmb(xi,γm)) m i n β m , γ m ∑ i = 1 N L ( y i , ∑ m = 1 M β m b ( x i , γ m ) )

对于这个公式,基本上没有办法直接求得解析解,因此我们可以利用前向分步算法来近似求解。

前向分步算法

前向分步算法的思想就是每次只优化一个基函数机器系数,逐步逼近目标,最后得到目标的近似值。


  • 初始化 f(x)=0 f ( x ) = 0
  • m=1,2,...,M m = 1 , 2 , . . . , M

  • 极小化损失函数 (βm,γm)=argminβ,γ(Ni=1L(yi,fm1(xi)+βb(xi,γ))) ( β m , γ m ) = a r g m i n β , γ ( ∑ i = 1 N L ( y i , f m − 1 ( x i ) + β b ( x i , γ ) ) )
  • 更新 fm(x)=fm1+βmb(x,γm) f m ( x ) = f m − 1 + β m b ( x , γ m )
  • 得到加法模型 f(x)=Mm=1βmb(x,γm) f ( x ) = ∑ m = 1 M β m b ( x , γ m )

adaboost算法解释

由前文,adaboost算法的分类器如下:

f(x)=Mm=1αmGm(x) f ( x ) = ∑ m = 1 M α m G m ( x )

根据数学归纳法,假设 m1 m − 1 轮,根据前向分步算法,已经得到:

fm1(x)=fm2(x)+αm1Gm1(x) f m − 1 ( x ) = f m − 2 ( x ) + α m − 1 G m − 1 ( x )

则在第 m m 轮有:

fm(x)=fm1(x)+αmGm(x) f m ( x ) = f m − 1 ( x ) + α m G m ( x )

目标:得到 αm,Gm(x) α m , G m ( x ) 使得 fm(x) f m ( x ) 在训练集上的指数损失 L(y,f(x))=exp[yf(x)] L ( y , f ( x ) ) = e x p [ − y f ( x ) ] 最小。

(αm,Gm(x))=argminα,GNi=1exp(yi(fm1(xi)+αmGm(x))) ( α m , G m ( x ) ) = a r g m i n α , G ∑ i = 1 N e x p ( − y i ( f m − 1 ( x i ) + α m G m ( x ) ) )

前一项 w¯mi=exp(yifm1(xi)) w ¯ m i = e x p ( − y i f m − 1 ( x i ) ) 跟最小化 (αm,Gm(x)) ( α m , G m ( x ) ) 无关,

因此
(αm,Gm(x))=argminα,GNi=1w¯miexp(yiαmGm(x)) ( α m , G m ( x ) ) = a r g m i n α , G ∑ i = 1 N w ¯ m i e x p ( − y i α m G m ( x ) )

则最小的 Gm(x) G m ( x ) 为:

Gm(x)=argminGNi=1w¯miI(yiG(xi)) G m ∗ ( x ) = a r g m i n G ∑ i = 1 N w ¯ m i I ( y i ≠ G ( x i ) )

对于 αm α m ∗ ,有:

Ni=1w¯miexp(yiαmGm(x))=yiGm(xi)w¯mieα+yiGm(xi)w¯mieα ∑ i = 1 N w ¯ m i e x p ( − y i α m G m ( x ) ) = ∑ y i ∈ G m ( x i ) w ¯ m i e − α + ∑ y i ∉ G m ( x i ) w ¯ m i e α

=(eαeα)Ni=1w¯miI(yiG(xi))+eαNi=1w¯mi = ( e α − e − α ) ∑ i = 1 N w ¯ m i I ( y i ≠ G ( x i ) ) + e − α ∑ i = 1 N w ¯ m i

α α 进行求导,有:

(eα+eα)Ni=1w¯miI(yiG(xi))eαNi=1w¯mi=0 ( e α + e − α ) ∑ i = 1 N w ¯ m i I ( y i ≠ G ( x i ) ) − e − α ∑ i = 1 N w ¯ m i = 0

可以得到 αm=12log(w¯miw¯miI(yiG(xi))1) α m ∗ = 1 2 l o g ( ∑ w ¯ m i ∑ w ¯ m i I ( y i ≠ G ( x i ) ) − 1 )

em=w¯miI(yiG(xi))w¯mi=wmiI(yiG(xi)) e m = ∑ w ¯ m i I ( y i ≠ G ( x i ) ) ∑ w ¯ m i = w m i I ( y i ≠ G ( x i ) )

有: αm=12log1emem α m ∗ = 1 2 l o g 1 − e m e m

αm α m 的更新与adaboost算法的 αm α m 的更新形式一致,因此adaboost可以看做是算法模型为加法模型,损失函数为指数函数,学习算法为前向分步算法时的二分类学习算法

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值