java指纹识别+谷歌图片识别技术

转载 2013年12月02日 21:45:53

转载自:http://blog.csdn.net/yjflinchong/article/details/7469213

java指纹识别+谷歌图片识别技术

前阵子在阮一峰的博客上看到了这篇《相似图片搜索原理》博客,就有一种冲动要将这些原理实现出来了。


写了图片识别的一个demo

提供源码下载,免费下载地址:http://download.csdn.net/detail/yjflinchong/4239243

去试试效果吧

要源码的,请留下邮箱。我尽量发到各位邮箱中。

本人三年JAVA开发,寻求牛人加入Q群53141769


Google "相似图片搜索":你可以用一张图片,搜索互联网上所有与它相似的图片。

打开Google图片搜索页面:


点击使用上传一张angelababy原图:


点击搜索后,Google将会找出与之相似的图片,图片相似度越高就越排在前面。如:


这种技术的原理是什么?计算机怎么知道两张图片相似呢?

根据Neal Krawetz博士的解释,实现相似图片搜素的关键技术叫做"感知哈希算法"(Perceptualhash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。

 

以下是一个最简单的Java实现:

 

预处理:读取图片

  1. BufferedImage source = ImageHelper.readPNGImage(filename);// 读取文件  

第一步,缩小尺寸。

将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。

  1. /** 
  2.      * 生成缩略图 <br/> 
  3.      * 保存:ImageIO.write(BufferedImage, imgType[jpg/png/...], File); 
  4.      *  
  5.      * @param source 
  6.      *            原图片 
  7.      * @param width 
  8.      *            缩略图宽 
  9.      * @param height 
  10.      *            缩略图高 
  11.      * @param b 
  12.      *            是否等比缩放 
  13.      * */  
  14.     public static BufferedImage thumb(BufferedImage source, int width,  
  15.             int height, boolean b) {  
  16.         // targetW,targetH分别表示目标长和宽  
  17.         int type = source.getType();  
  18.         BufferedImage target = null;  
  19.         double sx = (double) width / source.getWidth();  
  20.         double sy = (double) height / source.getHeight();  
  21.   
  22.         if (b) {  
  23.             if (sx > sy) {  
  24.                 sx = sy;  
  25.                 width = (int) (sx * source.getWidth());  
  26.             } else {  
  27.                 sy = sx;  
  28.                 height = (int) (sy * source.getHeight());  
  29.             }  
  30.         }  
  31.   
  32.         if (type == BufferedImage.TYPE_CUSTOM) { // handmade  
  33.             ColorModel cm = source.getColorModel();  
  34.             WritableRaster raster = cm.createCompatibleWritableRaster(width,  
  35.                     height);  
  36.             boolean alphaPremultiplied = cm.isAlphaPremultiplied();  
  37.             target = new BufferedImage(cm, raster, alphaPremultiplied, null);  
  38.         } else  
  39.             target = new BufferedImage(width, height, type);  
  40.         Graphics2D g = target.createGraphics();  
  41.         // smoother than exlax:  
  42.         g.setRenderingHint(RenderingHints.KEY_RENDERING,  
  43.                 RenderingHints.VALUE_RENDER_QUALITY);  
  44.         g.drawRenderedImage(source, AffineTransform.getScaleInstance(sx, sy));  
  45.         g.dispose();  
  46.         return target;  
  47.     }  



第二步,简化色彩。

将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。

  1. // 第二步,简化色彩。  
  2.         // 将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。  
  3.         int[] pixels = new int[width * height];  
  4.         for (int i = 0; i < width; i++) {  
  5.             for (int j = 0; j < height; j++) {  
  6.                 pixels[i * height + j] = ImageHelper.rgbToGray(thumb.getRGB(i, j));  
  7.             }  
  8.         }  



第三步,计算平均值。

计算所有64个像素的灰度平均值。

  1. // 第三步,计算平均值。  
  2.     // 计算所有64个像素的灰度平均值。  
  3.     int avgPixel = ImageHelper.average(pixels);  



第四步,比较像素的灰度。

将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。

  1. // 第四步,比较像素的灰度。  
  2.         // 将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。  
  3.         int[] comps = new int[width * height];  
  4.         for (int i = 0; i < comps.length; i++) {  
  5.             if (pixels[i] >= avgPixel) {  
  6.                 comps[i] = 1;  
  7.             } else {  
  8.                 comps[i] = 0;  
  9.             }  
  10.         }  



第五步,计算哈希值。

将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。

  1. // 第五步,计算哈希值。  
  2.         // 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。  
  3.         StringBuffer hashCode = new StringBuffer();  
  4.         for (int i = 0; i < comps.length; i+= 4) {  
  5.             int result = comps[i] * (int) Math.pow(23) + comps[i + 1] * (int) Math.pow(22) + comps[i + 2] * (int) Math.pow(21) + comps[i + 2];  
  6.             hashCode.append(binaryToHex(result));  
  7.         }  



得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。

  1. for (int i = 0; i < hashCodes.size(); i++)  
  2.        {  
  3.         int difference = hammingDistance(sourceHashCode, hashCodes.get(i));  
  4.         System.out.print("汉明距离:"+difference+"     ");  
  5.         if(difference==0){  
  6.             System.out.println("source.jpg图片跟example"+(i+1)+".jpg一样");  
  7.         }else if(difference<=5){  
  8.             System.out.println("source.jpg图片跟example"+(i+1)+".jpg非常相似");  
  9.         }else if(difference<=10){  
  10.             System.out.println("source.jpg图片跟example"+(i+1)+".jpg有点相似");  
  11.         }else if(difference>10){  
  12.             System.out.println("source.jpg图片跟example"+(i+1)+".jpg完全不一样");  
  13.         }  
  14.        }  



你可以将几张图片放在一起,也计算出他们的汉明距离对比,就可以看看两张图片是否相似。

 

这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。

 

实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。


以上内容大部分直接从阮一峰的网站上复制过来,想看原著的童鞋可以去在最上面的链接点击进去看。

相关文章推荐

java指纹识别+谷歌图片识别技术_源代码

主类: import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; publ...
  • ylchou
  • ylchou
  • 2012年04月20日 01:00
  • 8007

java指纹识别+谷歌图片识别技术

分类: java 算法 2012-04-17 13:38 7006人阅读 评论(66) 收藏 举报 java指纹识别+谷歌图片识别技术 前阵子在阮一峰的博客上看到了这篇《相...

java指纹识别+谷歌图片识别技术(采用Hash方法)

转载自:http://blog.csdn.net/yjflinchong/article/details/7469213 java指纹识别+谷歌图片识别技术 前阵子在阮一峰的博客上看到了这...

java指纹识别+谷歌图片识别技术

java指纹识别+谷歌图片识别技术 前阵子在阮一峰的博客上看到了这篇《相似图片搜索原理》博客,就有一种冲动要将这些原理实现出来了。 写了图片识别的一个demo 提供源码下载,源码...

[半原创]指纹识别+谷歌图片识别技术之C++代码

以前看到一个http://topic.csdn.net/u/20120417/15/edbf86f8-cfec-45c3-93e1-67bd555c684a.html网页,觉得蛮有趣的,方法似乎很简单...

指纹识别技术设计的注意事项

指纹识别用于各种应用,包括电子门禁系统、智能卡、车辆点火开关控制系统、带指纹控制存取功能的 USB 记忆棒及许多其它应用。指纹扫描仪中的数字信号处理元件可执行滤波、转换、特征提取、匹配运算及其它算法等...

“帆布指纹识别”初探——伟大而牛逼的网站追踪技术

【前言】 一般情况下,网站或者广告联盟都会非常想要一种技术方式可以在网络上精确定位到每一个个体,这样可以通过收集这些个体的数据,通过分析后更加精准的去推送广告(精准化营销)或其他有针对性的一些活...

远程OS探测中的网络协议栈指纹识别技术

摘要     远程探测计算机系统的OS(操作系统)类型、版本号等信息,是黑客入侵行为的重要步骤,也是网络安全中的一种重要的技术。在探测技术中,有一类是通过网络协议栈指纹来进行的。协议栈指纹是指不同操...
  • zacklin
  • zacklin
  • 2012年03月30日 11:43
  • 1273

iOS 中Touch ID(指纹识别技术) 的使用

Touch ID的使用方法

基于SSL中间证书的指纹识别技术

我们可以认识到,指纹识别技术正变得越来越复杂,它甚至不需要查看你的特殊习惯或浏览记录,通常只需要依靠硬件/软件功能和设置就可以识别你。而我们平日里所认为的安全,或许并不如想象中那样牢不可破。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:java指纹识别+谷歌图片识别技术
举报原因:
原因补充:

(最多只允许输入30个字)