利用矩阵快速幂加速二维dp hdu 5318

原创 2015年11月17日 22:16:48

题目大意:给出n种串,每种串有无限多个,现在要在这n种串中选择m个链接起来,链接的规则是:如果a串的后缀(len >= 2 )是b串的前缀,那么就可以把b接到a的后面,问最终可以组成多少个不同的串

首先应该排除重复的,因为重复的不会多产生链接。然后找出对于第i种串,后面可以接哪几个串。

然后dp[i][j],当链接了i个串后,以第j个串结尾的有多少种。这样dp[i][j] = ∑dp[i-1][k] (k串后面可以接j)

其实可以从暴力吧代码看出三重循环特像矩阵相乘。还有一点需注意:如果状态转移是利用if判断,而不是重新自己构造一个矩阵(只含01表示是否可以转换),那么不容易看出是矩阵相乘。因为矩阵相乘满足结合律,所有可以有。

因为m<=1e9,所以用矩阵优化,初始时dp[1][i]全部为1,计算矩阵temp.a[i][j],如果第i个串后面可以接j,那么temp.a[i][j] = 1,否则为0,这样dp[i]和temp矩阵相乘都会得到dp[i+1],使用矩阵快速幂计算出dp[1]*(temp.a)^(m-1)的和。



copy;http://blog.csdn.net/u011580493/article/details/47111385

思路:

注意字符串去重。还好m不会等于0。= =||

先暴力求出每个串能转移的位置。a[i][j]为1,第j个字符串能连在第i个字符串后面;反之为0,则不能。

定义dp[i][j]:选了i个串,最后以j串结尾的方案数。1

则dp[i][j] += dp[i-1][k]*a[k][j]; (1<=k<= n)。


由于i太大,有1e9个,然后就是矩阵快速幂登场了。

首先res矩阵第一行保存以每个串结尾的方案数,一开始第一行全为1.,其他位置全为0。

然后a矩阵快速幂m-1次方(为什么要-1,因为res第一行一开始就设为1,因此看做已经选了一个串了)。

最后把res的第一行加起来便是要求的答案。



#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<string>
#include<set>
using namespace std;
int vert[55][55];
char a[55][55];
int d[55][55];
long long tmp[55][55];
int ans[55][55];
int n,m;
const int mod = 1e9+7;
void mul(int a[][55],int b[][55])
{
	memset(tmp,0,sizeof(tmp));
	int i,j,k;
	for(i=0;i<n;i++)
	{
		for(j=0;j<n;j++)
		{
			for(k=0;k<n;k++)
			{
				tmp[i][j] += (1LL*a[i][k] * b[k][j])%mod; 
				while(tmp[i][j] >= mod)
				tmp[i][j] -=mod;	
			}
		}
	}
	for(i=0;i<n;i++)
	{
		for(j=0;j<n;j++)
		a[i][j]=tmp[i][j] ;
	}
}

void tcimi(int a[][55],int t)
{
	int i,j;
	for(i=0;i<55;i++)
	{
		ans[i][i]=1;
	}
	while(t)
	{
		if(t%2==1)
		mul(ans,a);
		mul(a,a);
		t/=2;	
	}
	for(i=0;i<55;i++)
	{
		for(j=0;j<55;j++)
		a[i][j] = ans[i][j];
	}
}
void  up(int  &x)
{
	while(x>=mod)
	x-= mod;
}
bool ok(int i,int j)
{
	int dx=2;
	int j1,t;
	int lena=strlen(a[i]);
	while(dx<=strlen(a[j]))
	{
		for(j1=lena-dx,t=0;j1<lena;j1++,t++)
		{
			if(a[i][j1]!=a[j][t])
			break;
		}
		if(j1>=lena)
		{
			return 1;
		}
		dx++;	
	}
	return 0;
}
void vert_init()
{
	int i,j;
	for(i=0;i<n;i++)
	{
		for(j=0;j<n;j++)
		{
			if(ok(i,j))
			vert[i][j]=1;
		}
	}
}
int main()
{
	int i,j,k,t;
	int ans1;
	scanf("%d",&t);
	while(t--)
	{
		set<string > se;
		memset(vert,0,sizeof(vert));
		memset(d,0,sizeof(d));
		memset(ans,0,sizeof(ans));
		scanf("%d%d",&n,&m);
		for(i=0,j=0;i<n;j++,i++)
		{
			//printf("j=%d\n",j);
			scanf("%s",a[j]);
			if(strlen(a[j])<2||se.find(a[j])!=se.end())
			{
				j--;
			}
			se.insert(a[j]);
		}
		n=j;
		/*for(i=2;i<=m;i++)
        {
            for(j=0;j<n;j++)
            {
                for(k=0;k<n;k++)
                {
                    //if(vert[k][j])
                    //{
                        up(d[i][j] += d[i-1][k]*vert[k][j]);    
                    //}    
                }
            }
        }*/
		//printf("n===%d %d\n",n,j);
		vert_init();
		tcimi(vert,m-1);
		for(j=0;j<n;j++)
		{
			d[0][j] = 1; 
		}
		mul(d,vert);
		int ans1=0;
		//for(i=0;i<n;i++)
		for(j=0;j<n;j++)
		up(ans1+=d[0][j]);
		printf("%d\n",ans1);
	}
	return 0;
}


HDU 5863 cjj's string game(dp+矩阵快速幂)

Description 有种不同的字符,每种字符有无限个,要求用这k种字符构造两个长度为n的字符串a和b,使得a串和b串的最长公共部分长度恰为m,问方案数 Input 第一行一整数T表示用例组数...
  • V5ZSQ
  • V5ZSQ
  • 2016年09月03日 10:20
  • 494

poj 3744 Scout YYF I(矩阵快速幂优化dp)

题目链接: 点击打开链接 题目大意: 给出一些地雷,当前人在位置1,人走一步的概率为p,走两步的概率为1-p,问这个人安全走完这段路的概率 题目分析: 很容易得到的dp式子,dp[i] ...
  • qq_24451605
  • qq_24451605
  • 2015年07月18日 16:30
  • 525

HDU 2294 Pendant (DP+矩阵快速幂降维)

HDU 2294 Pendant (DP+矩阵快速幂降维) ACM 题目地址:HDU 2294 Pendant 题意:  土豪给妹子做首饰,他有K种珍珠,每种N个,为了炫富,他每种...
  • hcbbt
  • hcbbt
  • 2014年08月04日 00:36
  • 2113

从快速幂到dp 优化:矩阵快速幂

幂运算 nn 个aa 相加我们当然不会写成一个循环,nn 个aa 相乘我们自然要用幂运算。 幂运算裸题 题目链接 L1-012. 计算指数 解法 用上cmat...
  • CSDNjiangshan
  • CSDNjiangshan
  • 2017年07月14日 21:05
  • 715

hdu2829之二维斜率优化DP

T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in...
  • xingyeyongheng
  • xingyeyongheng
  • 2014年05月16日 21:07
  • 1710

hdu 6030 (矩阵快速幂)

题意:给你一串珠子,要求任意素数区间段内红色大于蓝色,问有多少种方案。赛后补题…… 我们首先可以发现只要考虑2和3就可以了,因为其他任意区间都可以拆成2和3的组合,所以只要2和3满足就一定可以。 ...
  • ciel_s
  • ciel_s
  • 2017年05月08日 16:25
  • 338

BZOJ 4417: [Shoi2013]超级跳马【矩阵快速幂优化dp

矩阵快速幂优化dp……大概似乎还是很裸的……然而我昨天才学会这套理论于是考试只好在200+分场里110滚粗【哭 嗯考虑用f[i][j]表示在第i行第j列的方案总数 转移的话,因为只能跳奇数格,所以f[...
  • Flaze_
  • Flaze_
  • 2016年09月21日 15:05
  • 480

hdu2157之矩阵快速幂

矩阵快速幂
  • xingyeyongheng
  • xingyeyongheng
  • 2013年08月03日 13:22
  • 2166

hdu 5318 The Goddess Of The Moon 矩阵快速幂

题意:有n个小楼梯,如果两个楼梯的 前缀等于另一个的后缀就可以首尾相连,前缀后缀长度要大于等于2。 问m个楼梯组成,有多少种组成方法。 做法:要去重,然后judge 每个楼梯能不能连,构造出构造矩阵...
  • u013532224
  • u013532224
  • 2015年07月29日 12:26
  • 949

HDU 5318 The Goddess Of The Moon(矩阵快速幂)

The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/...
  • yanghuaqings
  • yanghuaqings
  • 2015年07月29日 17:27
  • 677
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:利用矩阵快速幂加速二维dp hdu 5318
举报原因:
原因补充:

(最多只允许输入30个字)