关闭

利用矩阵快速幂加速二维dp hdu 5318

192人阅读 评论(0) 收藏 举报
分类:

题目大意:给出n种串,每种串有无限多个,现在要在这n种串中选择m个链接起来,链接的规则是:如果a串的后缀(len >= 2 )是b串的前缀,那么就可以把b接到a的后面,问最终可以组成多少个不同的串

首先应该排除重复的,因为重复的不会多产生链接。然后找出对于第i种串,后面可以接哪几个串。

然后dp[i][j],当链接了i个串后,以第j个串结尾的有多少种。这样dp[i][j] = ∑dp[i-1][k] (k串后面可以接j)

其实可以从暴力吧代码看出三重循环特像矩阵相乘。还有一点需注意:如果状态转移是利用if判断,而不是重新自己构造一个矩阵(只含01表示是否可以转换),那么不容易看出是矩阵相乘。因为矩阵相乘满足结合律,所有可以有。

因为m<=1e9,所以用矩阵优化,初始时dp[1][i]全部为1,计算矩阵temp.a[i][j],如果第i个串后面可以接j,那么temp.a[i][j] = 1,否则为0,这样dp[i]和temp矩阵相乘都会得到dp[i+1],使用矩阵快速幂计算出dp[1]*(temp.a)^(m-1)的和。



copy;http://blog.csdn.net/u011580493/article/details/47111385

思路:

注意字符串去重。还好m不会等于0。= =||

先暴力求出每个串能转移的位置。a[i][j]为1,第j个字符串能连在第i个字符串后面;反之为0,则不能。

定义dp[i][j]:选了i个串,最后以j串结尾的方案数。1

则dp[i][j] += dp[i-1][k]*a[k][j]; (1<=k<= n)。


由于i太大,有1e9个,然后就是矩阵快速幂登场了。

首先res矩阵第一行保存以每个串结尾的方案数,一开始第一行全为1.,其他位置全为0。

然后a矩阵快速幂m-1次方(为什么要-1,因为res第一行一开始就设为1,因此看做已经选了一个串了)。

最后把res的第一行加起来便是要求的答案。



#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<string>
#include<set>
using namespace std;
int vert[55][55];
char a[55][55];
int d[55][55];
long long tmp[55][55];
int ans[55][55];
int n,m;
const int mod = 1e9+7;
void mul(int a[][55],int b[][55])
{
	memset(tmp,0,sizeof(tmp));
	int i,j,k;
	for(i=0;i<n;i++)
	{
		for(j=0;j<n;j++)
		{
			for(k=0;k<n;k++)
			{
				tmp[i][j] += (1LL*a[i][k] * b[k][j])%mod; 
				while(tmp[i][j] >= mod)
				tmp[i][j] -=mod;	
			}
		}
	}
	for(i=0;i<n;i++)
	{
		for(j=0;j<n;j++)
		a[i][j]=tmp[i][j] ;
	}
}

void tcimi(int a[][55],int t)
{
	int i,j;
	for(i=0;i<55;i++)
	{
		ans[i][i]=1;
	}
	while(t)
	{
		if(t%2==1)
		mul(ans,a);
		mul(a,a);
		t/=2;	
	}
	for(i=0;i<55;i++)
	{
		for(j=0;j<55;j++)
		a[i][j] = ans[i][j];
	}
}
void  up(int  &x)
{
	while(x>=mod)
	x-= mod;
}
bool ok(int i,int j)
{
	int dx=2;
	int j1,t;
	int lena=strlen(a[i]);
	while(dx<=strlen(a[j]))
	{
		for(j1=lena-dx,t=0;j1<lena;j1++,t++)
		{
			if(a[i][j1]!=a[j][t])
			break;
		}
		if(j1>=lena)
		{
			return 1;
		}
		dx++;	
	}
	return 0;
}
void vert_init()
{
	int i,j;
	for(i=0;i<n;i++)
	{
		for(j=0;j<n;j++)
		{
			if(ok(i,j))
			vert[i][j]=1;
		}
	}
}
int main()
{
	int i,j,k,t;
	int ans1;
	scanf("%d",&t);
	while(t--)
	{
		set<string > se;
		memset(vert,0,sizeof(vert));
		memset(d,0,sizeof(d));
		memset(ans,0,sizeof(ans));
		scanf("%d%d",&n,&m);
		for(i=0,j=0;i<n;j++,i++)
		{
			//printf("j=%d\n",j);
			scanf("%s",a[j]);
			if(strlen(a[j])<2||se.find(a[j])!=se.end())
			{
				j--;
			}
			se.insert(a[j]);
		}
		n=j;
		/*for(i=2;i<=m;i++)
        {
            for(j=0;j<n;j++)
            {
                for(k=0;k<n;k++)
                {
                    //if(vert[k][j])
                    //{
                        up(d[i][j] += d[i-1][k]*vert[k][j]);    
                    //}    
                }
            }
        }*/
		//printf("n===%d %d\n",n,j);
		vert_init();
		tcimi(vert,m-1);
		for(j=0;j<n;j++)
		{
			d[0][j] = 1; 
		}
		mul(d,vert);
		int ans1=0;
		//for(i=0;i<n;i++)
		for(j=0;j<n;j++)
		up(ans1+=d[0][j]);
		printf("%d\n",ans1);
	}
	return 0;
}


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:23481次
    • 积分:742
    • 等级:
    • 排名:千里之外
    • 原创:50篇
    • 转载:13篇
    • 译文:0篇
    • 评论:2条
    最新评论