思路: 矩阵快速幂
分析:
1 题目给定一个n*n的矩阵要求矩阵的k次幂之后的矩阵的对角线的和
2 矩阵快速幂的裸题
代码;
/************************************************
* By: chenguolin *
* Date: 2013-08-23 *
* Address: http://blog.csdn.net/chenguolinblog *
***********************************************/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long int64;
const int MOD = 9973;
const int MAXN = 11;
int n;
struct Matrix{
int mat[MAXN][MAXN];
Matrix operator*(const Matrix& m)const{
Matrix tmp;
for(int i = 0 ; i < n ; i++){
for(int j = 0 ; j < n ; j++){
tmp.mat[i][j] = 0;
for(int k = 0 ; k < n ; k++){
tmp.mat[i][j] += mat[i][k]*m.mat[k][j]%MOD;
tmp.mat[i][j] %= MOD;
}
}
}
return tmp;
}
};
int Pow(Matrix &m , int k){
Matrix ans;
memset(ans.mat , 0 , sizeof(ans.mat));
for(int i = 0 ; i < n ; i++)
ans.mat[i][i] = 1;
while(k){
if(k&1)
ans = ans*m;
k >>= 1;
m = m*m;
}
int sum = 0;
for(int i = 0 ; i < n ; i++)
sum += ans.mat[i][i];
return sum%MOD;
}
int main(){
int cas , k;
Matrix m;
scanf("%d" , &cas);
while(cas--){
scanf("%d%d" , &n , &k);
for(int i = 0 ; i < n ; i++){
for(int j = 0 ; j < n ; j++){
scanf("%d" , &m.mat[i][j]);
m.mat[i][j] %= MOD;
}
}
printf("%d\n" , Pow(m , k));
}
return 0;
}