思路:最短路+floyd+0/1背包
分析:
1 这一题多了一个限制条件能量,即每一点都有一个自己的能量值。
2 问题是要求能量至少要大于1/2的情况下的最短路,最开始我理解成是贪心,然后就是无休止的的WA,后来才知道是dp。其实很好理解,对于每一个点的能量只有两种选择取或者不取,那么这就是典型的0/1背包问题。但是有一个问题就是选取什么作为背包的容量,刚开始我选择pow_sum作为背包的容量,然后距离为价值求dp,然后又是一顿WA。后来改成了以cost_sum作为背包的容量,然后pow作为价值求解dp,最后判断是否有一个
dp[i] > sum/2然后就1 A了。
3 注意题目明确指出有多个坦克,意思就是每一个坦克都从0开出并且只能攻击一个点。
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 110
#define INF 0xFFFFFFF
int t , n , m;
long long ans;
long long cost_sum , pow_sum;
long long dis[MAXN][MAXN];
long long dp[600010];
long cost[MAXN];
int pow[MAXN];
/*初始化*/
void init(){
int i , j;
for(i = 0 ; i <= n ; i++){
for(j = 0 ; j <= n ; j++)
dis[i][j] = INF;
dis[i][i] = 0;
}
}
/*floyd求解最短路*/
void floyd(){
int i , j , k;
for(k = 0 ; k <= n ; k++){
for(i = 0 ; i <= n ; i++){
for(j = 0 ; j <= n ; j++){
if(dis[i][j] > dis[i][k]+dis[k][j])
dis[i][j] = dis[i][k]+dis[k][j];
}
}
}
}
long long max(long long a , long long b){
return a > b ? a : b;
}
/*DP函数*/
void DP(){
memset(dp , 0 , sizeof(dp));
for(int i = 1 ; i <= n ; i++){
if(cost[i] == INF)/*如果cost[i] = INF说明没有边,那么肯定不用考虑*/
continue;
for(int j = cost_sum ; j >= cost[i] ; j--)
dp[j] = max(dp[j-cost[i]]+pow[i] , dp[j]);
}
}
int main(){
int a , b , v , flag;
scanf("%d" , &t);
while(t--){
scanf("%d%d" , &n , &m);
init();
for(int i = 0 ; i < m ; i++){
scanf("%d%d%d" , &a , &b , &v);
if(dis[a][b] > v)/*重边*/
dis[a][b] = dis[b][a] = v;
}
pow_sum = cost_sum = 0;
for(int i = 1 ; i <= n ; i++){
scanf("%d" , &pow[i]);
pow_sum += pow[i];
}
floyd();
for(int i = 1 ; i <= n ; i++){
cost[i] = dis[0][i];/*求出0-所有点的最短路*/
if(cost[i] != INF)/*求出0能够到的点的距离之和*/
cost_sum += cost[i];
}
DP();
flag = 0;
for(long long i = 1 ; i <= cost_sum ; i++){
if(dp[i] > pow_sum/2){
flag = 1;
ans = i;
break;
}
}
if(!flag)
printf("impossible\n");
else
printf("%lld\n" , ans);
}
return 0;
}