hdu 3339 In Action 最短路spfa+背包

本文介绍了一种结合最短路径算法与背包问题思想解决特定问题的方法。通过SPFA算法预处理初始点到各点的最短路径,再利用动态规划选取节点,使得所选节点的电力值之和超过总电力值一半的同时,这些节点之间的路径和最短。
摘要由CSDN通过智能技术生成

题目链接

题意:给出n个点及每个点的电力值,给出m条路。选取若干个点,在保证其电力值之和大于总电力值的一半的情况下求其最短路径和。

先求出初始点到每个点的最短路径,然后用背包的思想选取若干个点,使距离和最小。注意每个坦克只能到一个点。

#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#define N 110
#define M 11000
#define INF 0x7ffffff
using namespace std;

int d[N],v[N],dp[M],n,mp[N][N],p[N];

void spfa()
{
    for(int i=0;i<=n;i++)   d[i]=INF,v[i]=0;
    queue<int> q;
    q.push(0);
    v[0]=1;
    d[0]=0;
    while(!q.empty())
    {
        int c=q.front();
        q.pop();
        v[c]=0;
        for(int i=0;i<=n;i++)
        {
            if(d[i]>d[c]+mp[c][i])
            {
                d[i]=d[c]+mp[c][i];
                if(!v[i])   v[i]=1,q.push(i);
            }
        }
    }
    return ;
}

int main()
{
    int T,m;
    cin>>T;
    while(T--)
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<=n;i++)
            for(int j=0;j<=n;j++)
                mp[i][j]=INF;
        for(int i=0;i<m;i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            if(mp[u][v]>w)  mp[u][v]=mp[v][u]=w;
        }
        int sum=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&p[i]);
            sum+=p[i];
        }
        spfa();
        for(int i=1;i<=sum;i++) dp[i]=INF;
        dp[0]=0;
        for(int i=1;i<=n;i++)
            for(int j=sum;j>=p[i];j--)
                dp[j]=min(dp[j],dp[j-p[i]]+d[i]);
        int ans=INF;
        for(int i=sum/2+1;i<=sum;i++) ans=min(ans,dp[i]);
        if(ans>=INF)    cout<<"impossible"<<endl;
        else    cout<<ans<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值