思路: 最短路+Dij+优先队列
分析:
1 题目要求的是删除一条之和的最坏情况,并不是删除一条边之后的最短路(WA了好久不解释)。如果都可以到n,那么输入删除一条之后的最短路径。
2 利用邻阶表+优先队列优化+Dij可以做
3 father数组记录的是在原图中的1->n的最短路径中当前这个点的前一条边的编号。
4 在邻阶表里删除一条边相当于就是边的权值变为INF
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<utility>
#include<vector>
#include<queue>
using namespace std;
#define MAXN 110010
#define MAX 1010
#define INF 0xFFFFFFF
typedef pair<int , int>pii;
int t , n , m;
int first[MAXN] , next[MAXN];
int star[MAXN] , end[MAXN] , value[MAXN];
int vis[MAX];
int tmpFather[MAX];
int father[MAX];
int dis[MAX];
priority_queue<pii , vector<pii> , greater<pii> >q;
void init(){
memset(first , -1 , sizeof(first));
memset(next , -1 , sizeof(next));
}
void Dij(){
memset(vis , 0 , sizeof(vis));
for(int i = 2 ; i <= n ; i++)
dis[i] = INF;
dis[1] = 0;
q.push(make_pair(dis[1] , 1));
while(!q.empty()){
pii u = q.top();
q.pop();
int x = u.second;
if(vis[x])
continue;
vis[x] = 1;
for(int i = first[x] ; i != -1 ; i = next[i]){
if(dis[end[i]] > dis[x] + value[i]){
dis[end[i]] = dis[x] + value[i];
father[end[i]] = i; /*记录边的编号*/
q.push(make_pair(dis[end[i]] , end[i]));
}
}
}
}
int main(){
int a , b , v , x , y , ans , tmp;
scanf("%d" , &t);
while(t--){
scanf("%d%d" , &n , &m);
init();
for(int i = 0 ; i < m ; i++){
scanf("%d%d%d" , &star[i] , &end[i] , &value[i]);
star[i+m] = end[i] , end[i+m] = star[i] , value[i+m] = value[i];
/*处理成无向图*/
next[i] = first[star[i]];
first[star[i]] = i;
next[i+m] = first[star[i+m]];
first[star[i+m]] = i+m;
}
Dij();
if(dis[n] == INF)
printf("-1\n");
else{
x = n;
ans = 0;
memcpy(tmpFather , father , sizeof(father));
while(1){
y = tmpFather[x];
tmp = value[y];/*保存边的值*/
value[y] = INF;/*把边删除就是相当于权值为INF*/
Dij();
value[y] = tmp;
if(dis[n] == INF){/*如果这个时候不能到n说明是最坏情况,ans =-1,退出*/
ans = -1;
break;
}
if(ans < dis[n])/*更新为*/
ans = dis[n];
x = star[y];
if(x == 1)
break;
}
printf("%d\n" , ans);
}
}
return 0;
}