思路: 线段树单点更新
分析:
1 题目给定n个兵营的人数,现在有三种操作
(1)Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
2 最简单的线段树单点更新的题目
代码:
/************************************************
* By: chenguolin *
* Date: 2013-09-01 *
* Address: http://blog.csdn.net/chenguolinblog *
************************************************/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Lson(x) (x<<1)
#define Rson(x) (Lson(x)|1)
#define Mid(x,y) ((x+y)>>1)
#define Sum(x,y) (x+y)
const int N = 10;
const int MAXN = 50010;
int n;
int num[MAXN];
struct Node{
int left;
int right;
int sum;
};
Node node[4*MAXN];
void push_up(int pos){
node[pos].sum = Sum(node[Lson(pos)].sum,node[Rson(pos)].sum);
}
void init(int left , int right , int pos){
node[pos].left = left;
node[pos].right = right;
if(left == right){
node[pos].sum = num[left];
return;
}
int x = Mid(left , right);
init(left , x , Lson(pos));
init(x+1 , right , Rson(pos));
push_up(pos);
}
void update(int index , int val , int pos){
if(node[pos].left == node[pos].right){
node[pos].sum += val;
return;
}
int x = Mid(node[pos].left , node[pos].right);
if(index <= x)
update(index , val , Lson(pos));
else
update(index , val , Rson(pos));
push_up(pos);
}
int query(int left , int right , int pos){
if(node[pos].left == left && node[pos].right == right)
return node[pos].sum;
int x = Mid(node[pos].left , node[pos].right);
if(right <= x)
return query(left , right , Lson(pos));
else if(left > x)
return query(left , right , Rson(pos));
else
return query(left , x , Lson(pos))+query(x+1 , right , Rson(pos));
}
void input(){
char str[N];
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++)
scanf("%d" , &num[i]);
init(1 , n , 1);
getchar();
int x , y;
while(scanf("%s" , str) && str[0] != 'E'){
scanf("%d%d%*c" , &x , &y);
if(str[0] == 'Q')
printf("%d\n" , query(x , y , 1));
else if(str[0] == 'A')
update(x , y , 1);
else
update(x , -y , 1);
}
}
int main(){
int Case;
int cas = 1;
scanf("%d" , &Case);
while(Case--){
printf("Case %d:\n" , cas++);
input();
}
return 0;
}
思路:树状数组
分析:
1 对于区间求和的问题一般利用树状数组比线段树来的方便
2 树状数组建立就是在输入数据的时候做n次的update()。
代码:
/***********************************************
* By: chenguolin *
* Date: 2013-08-20 *
* Address: http://blog.csdn.net/chenguolinblog *
***********************************************/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN = 50010;
int n;
int treeNum[MAXN];
int lowbit(int x){
return x&(-x);
}
int getSum(int x){
int sum = 0;
while(x){
sum += treeNum[x];
x -= lowbit(x);
}
return sum;
}
void add(int x , int val){
while(x < MAXN){
treeNum[x] += val;
x += lowbit(x);
}
}
void solve(){
int x , y;
char str[10];
memset(treeNum , 0 , sizeof(treeNum));
for(int i = 1 ; i <= n ; i++){
scanf("%d%*c" , &x);
add(i , x);
}
while(scanf("%s" , str) && str[0] != 'E'){
scanf("%d%d%*c" , &x , &y);
if(str[0] == 'Q'){
int ans = getSum(y);
ans -= getSum(x-1);
printf("%d\n" , ans);
}
else if(str[0] == 'A'){
add(x , y);
}
else{
add(x , -y);
}
}
}
int main(){
int cas = 1;
int Case;
scanf("%d" , &Case);
while(Case--){
printf("Case %d:\n" , cas++);
scanf("%d" , &n);
solve();
}
return 0;
}