理解事务——原子性、一致性、隔离性和持久性

本文详细阐述了事务的ACID特性,包括原子性、一致性、隔离性和持久性,并解释了这些特性如何确保数据的完整性和一致性。介绍了不同的一致性级别,如强一致性、弱一致性和最终一致性,以及隔离级别的概念。
事务是指对系统进行的一组操作,为了保证系统的完整性,事务需要具有ACID特性,具体如下:
1. 原子性(Atomic)
     一个事务包含多个操作,这些操作要么全部执行,要么全都不执行。实现事务的原子性,要支持回滚操作,在某个操作失败后,回滚到事务执行之前的状态。
     回滚实际上是一个比较高层抽象的概念,大多数DB在实现事务时,是在事务操作的数据快照上进行的(比如,MVCC),并不修改实际的数据,如果有错并不会提交,所以很自然的支持回滚。
     而在其他支持简单事务的系统中,不会在快照上更新,而直接操作实际数据。可以先预演一边所有要执行的操作,如果失败则这些操作不会被执行,通过这种方式很简单的实现了原子性。
2. 一致性(Consistency)
     一致性是指事务使得系统从一个一致的状态转换到另一个一致状态。事务的一致性决定了一个系统设计和实现的复杂度。事务可以不同程度的一致性:
     强一致性:读操作可以立即读到提交的更新操作。
     弱一致性:提交的更新操作,不一定立即会被读操作读到,此种情况会存在一个不一致窗口,指的是读操作可以读到最新值的一段时间。
     最终一致性:是弱一致性的特例。事务更新一份数据,最终一致性保证在没有其他事务更新同样的值的话,最终所有的事务都会读到之前事务更新的最新值。如果没有错误发生,不一致窗口的大小依赖于:通信延迟,系统负载等。
     其他一致性变体还有:
     单调一致性:如果一个进程已经读到一个值,那么后续不会读到更早的值。
     会话一致性:保证客户端和服务器交互的会话过程中,读操作可以读到更新操作后的最新值。
3. 隔离性(Isolation)
     并发事务之间互相影响的程度,比如一个事务会不会读取到另一个未提交的事务修改的数据。在事务并发操作时,可能出现的问题有:
     脏读:事务A修改了一个数据,但未提交,事务B读到了事务A未提交的更新结果,如果事务A提交失败,事务B读到的就是脏数据。
     不可重复读:在同一个事务中,对于同一份数据读取到的结果不一致。比如,事务B在事务A提交前读到的结果,和提交后读到的结果可能不同。不可重复读出现的原因就是事务并发修改记录,要避免这种情况,最简单的方法就是对要修改的记录加锁,这回导致锁竞争加剧,影响性能。另一种方法是通过MVCC可以在无锁的情况下,避免不可重复读。
     幻读:在同一个事务中,同一个查询多次返回的结果不一致。事务A新增了一条记录,事务B在事务A提交前后各执行了一次查询操作,发现后一次比前一次多了一条记录。幻读是由于并发事务增加记录导致的,这个不能像不可重复读通过记录加锁解决,因为对于新增的记录根本无法加锁。需要将事务串行化,才能避免幻读。
     事务的隔离级别从低到高有:
     Read Uncommitted:最低的隔离级别,什么都不需要做,一个事务可以读到另一个事务未提交的结果。所有的并发事务问题都会发生。
     Read Committed:只有在事务提交后,其更新结果才会被其他事务看见。可以解决脏读问题
     Repeated Read:在一个事务中,对于同一份数据的读取结果总是相同的,无论是否有其他事务对这份数据进行操作,以及这个事务是否提交。可以解决脏读、不可重复读
     Serialization:事务串行化执行,隔离级别最高,牺牲了系统的并发性。可以解决并发事务的所有问题
     通常,在工程实践中,为了性能的考虑会对隔离性进行折中。
4. 持久性(Durability)
     事务提交后,对系统的影响是永久的。
     




<think>我们讨论原子性原子性是指一个操作或多个操作要么全部执行并且执行过程不会被任何因素打断,要么就都不执行。原子性是并发编程中的重要概念,用于确保数据的一致性正确。在编程中,原子操作通常通过硬件指令(如CAS)或锁机制来实现。下面我们将从不同层面(语言、操作系统、硬件)探讨原子性,并给出代码示例。###1.硬件层面的原子性现代处理器提供了一些原子指令,例如:- **CAS(Compare-And-Swap)**:比较并交换,如果当前值等于预期值,则更新为新值。- **XCHG**:交换指令,用于交换两个操作数的值。这些指令在硬件级别保证原子性。###2.操作系统层面的原子性操作系统提供原子操作的原语,如:- **自旋锁 (Spinlock)**:通过忙等待实现的锁,适用于短时间持有锁的情况。 -**信号量 (Semaphore)**:用于控制多个线程对共享资源的访问。###3.编程语言层面的原子性高级语言通常提供原子操作的支持:- **C++**: `std::atomic`类型原子操作函数。 -**Java**: `java.util.concurrent.atomic`包中的原子类(如 `AtomicInteger`)。- **Python**:虽然GIL(全局解释器锁)保证了字节码级别的原子性,但复杂操作仍需使用锁或`multiprocessing`模块。###代码示例####C++使用`std::atomic````cpp#include<iostream> #include<atomic> #include<thread> std::atomic<int>counter(0);void increment(intn){for (int i=0;i <n;i++){counter.fetch_add(1,std::memory_order_relaxed);}} intmain(){const intn =100000;std::threadt1(increment, n);std::thread t2(increment,n);t1.join();t2.join();std::cout<< "Counter =" <<counter <<std::endl;return0; }``` **解释**: -`std::atomic<int>`保证了 `counter`的自增操作是原子的。 -`fetch_add`是原子操作,即使多个线程同时执行,结果也是正确的(200000)。 ####Java使用 `AtomicInteger` ```javaimport java.util.concurrent.atomic.AtomicInteger;public classAtomicExample{private staticAtomicIntegercounter =new AtomicInteger(0);publicstatic voidmain(String[] args) throwsInterruptedException{Thread t1 =new Thread(() ->{for (int i=0;i <100000;i++){counter.incrementAndGet();}});Threadt2= newThread(()-> {for(inti =0; i<100000; i++) {counter.incrementAndGet();}});t1.start();t2.start();t1.join();t2.join();System.out.println("Counter =" +counter.get());} }``` **解释**: -`AtomicInteger`的`incrementAndGet`方法保证了原子性递增。 ####Python使用锁保证原子性在Python中,虽然简单操作(如整数自增)在GIL下可能是原子的,但复杂操作仍需显式同步。```pythonimportthreadingcounter =0lock =threading.Lock()def increment(n):global counterfor _in range(n):withlock:counter+=1n=100000t1 =threading.Thread(target=increment, args=(n,))t2= threading.Thread(target=increment,args=(n,)) t1.start() t2.start() t1.join() t2.join() print(f"Counter ={counter}") ```**解释**:-使用 `threading.Lock`确保 `counter +=1`操作的原子性。注意:在Python中,由于GIL的存在,单个字节码操作是原子的,但`counter+=1`实际上是多个字节码操作(读取、增加、写回),因此需要锁。###原子性与内存顺序在C++中,`std::atomic`允许指定内存顺序(如`std::memory_order_relaxed`),以控制操作的内存可见顺序。不同的内存顺序提供了不同的能与同步强度权衡。###总结原子性是并发编程的基础,通过硬件指令、操作系统原语或高级语言提供的原子类型来实现。正确使用原子操作可以避免数据竞争,确保程序正确。 §§相关问题§§: 1.什么是ABA问题?如何解决? 2.比较并交换(CAS)操作在哪些场景下适用? 3.在无锁编程中,原子操作的作用是什么?4.解释内存顺序(MemoryOrder)在原子操作中的重要。</think>### 原子性详解 原子性(Atomicity)是并发编程中的核心概念,指一个操作或多个操作要么**全部执行且不被中断**,要么**完全不执行**,不会出现部分执行的状态。原子操作是构建线程安全程序的基础。 #### 原子性的关键特征 1. **不可分割**:操作一旦开始,就会运行到结束,不会被线程调度打断 2. **全有或全无**:操作要么完全成功,要么完全失败(不会出现中间状态) 3. **状态一致性**:操作前后系统状态保持一致 #### 原子性的实现层次 ##### 1. 硬件级原子性(CPU指令级) 现代CPU提供原子指令: - **LOCK前缀**:锁定内存总线 - **CAS(Compare-and-Swap)**:比较并交换 - **XCHG**:原子交换 - **LL/SC(Load-Link/Store-Conditional)**:MIPS/ARM架构的原子原语 ```cpp // x86汇编实现原子递增 lock inc dword ptr [counter] ; LOCK前缀保证操作的原子性 ``` ##### 2. 编程语言级原子性 现代语言提供原子类型操作: ###### C++示例(std::atomic) ```cpp #include <atomic> #include <iostream> #include <thread> std::atomic<int> counter(0); // 原子整型 void increment(int n) { for (int i = 0; i < n; i++) { counter.fetch_add(1, std::memory_order_relaxed); // 原子递增 } } int main() { const int n = 100000; std::thread t1(increment, n); std::thread t2(increment, n); t1.join(); t2.join(); std::cout << "Counter = " << counter << "\n"; // 总是200000 return 0; } ``` **关键点**: - `std::atomic` 保证操作的原子性 - `memory_order_relaxed` 指定内存顺序(最宽松的约束) - 无锁实现,直接使用CPU原子指令 ###### Java示例(AtomicInteger) ```java import java.util.concurrent.atomic.AtomicInteger; public class AtomicExample { private static AtomicInteger counter = new AtomicInteger(0); public static void main(String[] args) throws InterruptedException { Thread t1 = new Thread(() -> { for (int i = 0; i < 100000; i++) { counter.incrementAndGet(); // 原子递增 } }); Thread t2 = new Thread(() -> { for (int i = 0; i < 100000; i++) { counter.incrementAndGet(); } }); t1.start(); t2.start(); t1.join(); t2.join(); System.out.println("Counter = " + counter.get()); // 总是200000 } } ``` ##### 3. 操作系统级原子性 操作系统提供原子原语: - **自旋锁(Spinlock)**:忙等待锁 - **信号量(Semaphore)**:计数锁 - **互斥锁(Mutex)**:互斥访问 ```c // Linux内核自旋锁实现原子操作 spinlock_t my_lock = SPIN_LOCK_UNLOCKED; void critical_section() { spin_lock(&my_lock); // 临界区代码(原子执行) spin_unlock(&my_lock); } ``` #### 原子性应用场景 1. **计数器操作**:如访问计数、库存管理 2. **标志位更新**:状态切换(如从运行到停止) 3. **指针交换**:无锁数据结构中的指针更新 4. **ID生成**:生成唯一序列号 #### 非原子操作的风险示例 ```python # Python中的非原子操作(因GIL的存在,简单操作在CPython中是原子的,但复杂操作不是) import threading counter = 0 def increment(): global counter for _ in range(100000): counter += 1 # 非原子操作(读取-修改-写入三步) threads = [] for i in range(5): t = threading.Thread(target=increment) threads.append(t) t.start() for t in threads: t.join() print(counter) # 结果通常小于500000(因竞争条件) ``` #### 保证原子性的方法 1. **使用原子类型**:`std::atomic` (C++), `AtomicInteger` (Java) 2. **互斥锁**:`mutex` (C++), `synchronized` (Java) 3. **事务内存**:实验技术(如C++ TM TS) 4. **无锁编程**:CAS-based数据结构 #### 内存顺序与原子性 原子操作需要配合正确的内存顺序: - **Sequential consistency** (`memory_order_seq_cst`): 最强保证 - **Acquire-release** (`memory_order_acquire`/`release`) - **Relaxed** (`memory_order_relaxed`): 仅保证原子性,不保证顺序 ```cpp // C++内存顺序示例 std::atomic<bool> ready(false); int data = 0; void producer() { data = 42; // 非原子写 ready.store(true, std::memory_order_release); // 释放操作 } void consumer() { while (!ready.load(std::memory_order_acquire)) { // 获取操作 // 忙等待 } std::cout << data << "\n"; // 总是42(保证可见) } ``` ### 总结 原子性是多线程编程的基石,可通过: 1. 硬件支持的原子指令 2. 语言级原子类型 3. 操作系统同步原语 来实现。正确使用原子操作可以避免竞争条件,保证数据一致性,同时提供比锁更高效的并发控制。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值