[POJ3088]Push Botton Lock(dp||数学相关)

这篇博客介绍了如何用动态规划方法求解将n个不同球放入多个盒子的方案数。通过定义f(i,j)表示i个球放入j个盒子的方案数,并利用组合数公式进行状态转移,得出递推关系。博客还提到了该问题与第二类斯特林数的关系,并给出了错误思路的分析。最后,博主分享了实现代码和解题总结,强调了在构建动态规划状态时要确保清晰并验证样例。" 123884487,11634215,Python基础教程:组合数据类型详解——序列,"['Python', '编程教程', '数据类型', '基础教程']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

传送门

题意:给出n个不同的球,问把这些球放入若干个不同的盒子里的方案数。n<=11.

题解

很容易想到dp。f(i,j)表示将i个小球放入j个盒子里的方案数,那么
f(i,j)=k=1if(ik,j1)c(ni+k,k) ,其中c为组合数。
也就是说,f(i-k,j-1)为将i-k个球放入j-1个盒子里的方案数,那么第j个盒子应该放入k个球,除了已经放进去的i-k个,还剩下n-i+k个,所以这k个球有c(n-i+k,k)种选择。

网上有的说这道题是一个经典的第二类string数的问题。第二类string数本身的问题是“s(p,k)为将p个不同的东西放到k个相同的里面去”,而这道题其实p和k都无差别。那么答案应该为k!s(p,k),也就是将盒子全排一下。
s(p,k)的递推关系式为S(p,k)=k*s(p-1,k)+s(p-1,k-1) ,1<= k<=p-1;边界条件:S(p,p)=1 ,p>=0,S(p,0)=0 ,p>=1

关于第一类string数和第二类string数更详细的解释戳这里

我刚开始想错了,既用了组合数又用了阶乘,后来发现这两种方法单独做都可以,但是结合起来是没有道理的。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define LL long long
#define N 105

int T,Case,n;
LL c[N][N],f[N][N],ans;

void clear()
{
    memset(f,0,sizeof(f));ans=0;
}
int main()
{
    scanf("%d",&T);
    for (int i=0;i<=11;++i) c[i][0]=1;
    for (int i=1;i<=11;++i)
        for (int j=1;j<=11;++j)
            c[i][j]=c[i-1][j]+c[i-1][j-1];

    while (T--)
    {
        clear();
        scanf("%d",&n);
        if (n>11)
        {
            printf("%d %d 0\n",++Case,n);
            continue;
        }
        for (int i=1;i<=n;++i) f[i][1]=1*c[n][i];
        for (int i=2;i<=n;++i)
            for (int j=2;j<=i;++j)
            {
                for (int k=1;k<=i;++k)
                    f[i][j]+=f[i-k][j-1]*c[n-i+k][k];
            }
        for (int i=1;i<=n;++i)
            for (int j=1;j<=i;++j)
                ans+=f[i][j];
        printf("%d %d %lld\n",++Case,n,ans);
    }
}

总结

①dp要想清楚再写。最好是算一算样例。尤其是状态不要搞乱了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值