题目描述
题意:给出n个不同的球,问把这些球放入若干个不同的盒子里的方案数。n<=11.
题解
很容易想到dp。f(i,j)表示将i个小球放入j个盒子里的方案数,那么
f(i,j)=∑k=1if(i−k,j−1)∗c(n−i+k,k)
,其中c为组合数。
也就是说,f(i-k,j-1)为将i-k个球放入j-1个盒子里的方案数,那么第j个盒子应该放入k个球,除了已经放进去的i-k个,还剩下n-i+k个,所以这k个球有c(n-i+k,k)种选择。
网上有的说这道题是一个经典的第二类string数的问题。第二类string数本身的问题是“s(p,k)为将p个不同的东西放到k个相同的里面去”,而这道题其实p和k都无差别。那么答案应该为k!s(p,k),也就是将盒子全排一下。
s(p,k)的递推关系式为S(p,k)=k*s(p-1,k)+s(p-1,k-1) ,1<= k<=p-1;边界条件:S(p,p)=1 ,p>=0,S(p,0)=0 ,p>=1
关于第一类string数和第二类string数更详细的解释戳这里
我刚开始想错了,既用了组合数又用了阶乘,后来发现这两种方法单独做都可以,但是结合起来是没有道理的。
代码
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define LL long long
#define N 105
int T,Case,n;
LL c[N][N],f[N][N],ans;
void clear()
{
memset(f,0,sizeof(f));ans=0;
}
int main()
{
scanf("%d",&T);
for (int i=0;i<=11;++i) c[i][0]=1;
for (int i=1;i<=11;++i)
for (int j=1;j<=11;++j)
c[i][j]=c[i-1][j]+c[i-1][j-1];
while (T--)
{
clear();
scanf("%d",&n);
if (n>11)
{
printf("%d %d 0\n",++Case,n);
continue;
}
for (int i=1;i<=n;++i) f[i][1]=1*c[n][i];
for (int i=2;i<=n;++i)
for (int j=2;j<=i;++j)
{
for (int k=1;k<=i;++k)
f[i][j]+=f[i-k][j-1]*c[n-i+k][k];
}
for (int i=1;i<=n;++i)
for (int j=1;j<=i;++j)
ans+=f[i][j];
printf("%d %d %lld\n",++Case,n,ans);
}
}
总结
①dp要想清楚再写。最好是算一算样例。尤其是状态不要搞乱了。