定义
首先引入一个叫做贝祖定理的东西
对于 ∀a,b∈N,总是∃x,y∈Z,使ax+by=(a,b)
已知 a,b ,求 ax+by=(a,b) 一组可行解的算法即为扩展欧几里得算法。
算法流程
首先我们知道用来求最大公因数的欧几里得算法。
int gcd(int a,int b)
{
if (!b) return a;
else return gcd(b,a/b)
}
扩展欧几里得其实是在欧几里得算法的基础上运行的,时间复杂度也在 log 级别。
假设现在 ax+by=(a,b) ,那么 (b