扩展欧几里得算法(exgcd) 学习笔记

本文介绍了扩展欧几里得算法(exgcd),详细阐述了算法流程,并通过贝祖定理解释了算法原理。还讨论了算法在解决一般型等式和求逆元问题上的应用,提供了求解过程和实用技巧。
摘要由CSDN通过智能技术生成

定义

首先引入一个叫做贝祖定理的东西

对于 a,bN,x,yZ,使ax+by=(a,b)

已知 a,b ,求 ax+by=(a,b) 一组可行解的算法即为扩展欧几里得算法。

算法流程

首先我们知道用来求最大公因数的欧几里得算法。

int gcd(int a,int b)
{
    if (!b) return a;
    else return gcd(b,a/b)
}

扩展欧几里得其实是在欧几里得算法的基础上运行的,时间复杂度也在 log 级别。
假设现在 ax+by=(a,b) ,那么 (b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值