poj 1755 Triathlon (半平面交求解不等式组)

原创 2017年01月04日 07:59:10

Triathlon
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6881   Accepted: 1780

Description

Triathlon is an athletic contest consisting of three consecutive sections that should be completed as fast as possible as a whole. The first section is swimming, the second section is riding bicycle and the third one is running. 

The speed of each contestant in all three sections is known. The judge can choose the length of each section arbitrarily provided that no section has zero length. As a result sometimes she could choose their lengths in such a way that some particular contestant would win the competition. 

Input

The first line of the input file contains integer number N (1 <= N <= 100), denoting the number of contestants. Then N lines follow, each line contains three integers Vi, Ui and Wi (1 <= Vi, Ui, Wi <= 10000), separated by spaces, denoting the speed of ith contestant in each section.

Output

For every contestant write to the output file one line, that contains word "Yes" if the judge could choose the lengths of the sections in such a way that this particular contestant would win (i.e. she is the only one who would come first), or word "No" if this is impossible.

Sample Input

9
10 2 6
10 7 3
5 6 7
3 2 7
6 2 6
3 5 7
8 4 6
10 4 2
1 8 7

Sample Output

Yes
Yes
Yes
No
No
No
Yes
No
Yes

Source

[Submit]   [Go Back]   [Status]   [Discuss]


题目大意:有三项运动,给出每个人进行每项运动的速度,你可以自己确定三个项目的路程(不能为0),问是否存在方案使第i个人获胜,不能存在并列

题解:半平面交求解不等式组

假设要求第i个人是否可以获胜

那么我们可以得到一个不等式组(aj-ai)*x+(bj-bi)*y+(cj-ci)*z>0   (j!=i)

因为每项的路程不能为0,所以我们可以同时除以z,(aj-ai)*(x/z)+(bj-bi)*(y/z)+(cj-ci)>0

换元得 (aj-ai)*x+(bj-bi)*y+(cj-ci)>0

那么问题就转换成了求不等式组的可行域。

因为我们要统一取直线的右边或者左边(我取的左边),所以我们要针对不同的情况去不同的向量方向(在直线上取两个点即可)。 

直线的斜率单减,a>0 ,取的两点的横坐标单增

直线的斜率单减,a<0 ,取的两点的横坐标单减

直线的斜率单增,a>0 ,取的两点的横坐标单减

直线的斜率单增,a<0 ,取的两点的横坐标单增

总结一下,就是横坐标单增单减由b的正负决定,b<0单减,b>0单增

还有需要注意的是大框的边界,因为x>0,y>0,所以(inf,inf),(eps,inf),(eps,eps),(inf,eps)

再者因为是大于号,所以在直线上的点是取不到的,所以最后最好判断一下半平面交所形成的平面的面积是否为0.

这题的精度限制非常的恶心,要取到1e-16

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 103
#define eps 1e-16
#define inf 1000000000
using namespace std;
struct vector {
	double x,y;
	vector (double X=0,double Y=0){
		x=X,y=Y;
	}
}a1[N],p[N],tmp[N];
typedef vector point;
vector operator -(vector a,vector b){
	return vector (a.x-b.x,a.y-b.y);
}
vector operator +(vector a,vector b){
	return vector (a.x+b.x,a.y+b.y);
}
vector operator *(vector a,double t)
{
	return vector (a.x*t,a.y*t);
}
vector operator !=(vector a,vector b){
	return a.x!=b.x||a.y!=b.y;
}
struct data{
	point a,b;
}line[N];
double a[N],b[N],c[N];
int n,m;
void init()
{
	m=0;
	p[m++]=point(inf,inf);
	p[m++]=point(eps,inf);
	p[m++]=point(eps,eps);
	p[m++]=point(inf,eps);
}
int dcmp(double x)
{
	if (fabs(x)<eps) return 0;
	return x<0?-1:1;
}
double cross(vector a,vector b)
{
	return a.x*b.y-a.y*b.x;
}
point glt(point a,point a0,point b,point b0)
{
    double a1,b1,c1,a2,b2,c2;  
    a1 = a.y - a0.y;  
    b1 = a0.x - a.x;  
    c1 = cross(a,a0);  
    a2 = b.y - b0.y;  
    b2 = b0.x - b.x;  
    c2 = cross(b,b0);  
    double d = a1 * b2 - a2 * b1;  
    return point((b1 * c2 - b2 * c1) / d,(c1 * a2 - c2 * a1) / d);   
}
void cut(point a,point b)
{
	int cnt=0;
	memset(tmp,0,sizeof(tmp));
	for (int i=0;i<m;i++){
		double c=cross(b-a,p[i]-a);
		double d=cross(b-a,p[(i+1)%m]-a);
		if (dcmp(c)>=0) 
		  tmp[cnt++]=p[i];
		if (dcmp(c)*dcmp(d)<0) 
		 tmp[cnt++]=glt(a,b,p[i],p[(i+1)%m]);
	}
	m=0;
	for (int i=0;i<cnt;i++) 
	 if (m==0 || (tmp[i].x!=p[m-1].x||tmp[i].y!=p[m-1].y)) 
	   p[m++]=tmp[i];
}
int main()
{
	freopen("a.in","r",stdin);
	freopen("my.out","w",stdout);
	scanf("%d",&n);
	for (int i=1;i<=n;i++) scanf("%lf%lf%lf",&a[i],&b[i],&c[i]);
	for (int i=1;i<=n;i++){
		int k=0;
		bool mark=true;
		for (int j=1;j<=n;j++){
			if (i==j) continue;
			double nowa=1.0/a[j]-1.0/a[i];
			double nowb=1.0/b[j]-1.0/b[i];
			double nowc=1.0/c[j]-1.0/c[i];
			if (dcmp(nowa)==0&&dcmp(nowb)==0) {
				if (dcmp(nowc)>0) continue;
				else {
					mark=false;
					break;
				}
			}
			k++;
			if (dcmp(nowb)==0) {
				double t=-nowc/nowa;
				line[k].a.x=t; line[k].b.x=t;
				line[k].a.y=1; line[k].b.y=2;
				if (dcmp(nowa)>0) swap(line[k].a,line[k].b);
				continue;
			}
			line[k].a.x=1;
			line[k].a.y=-(nowa+nowc)/nowb;
			line[k].b.x=2;
			line[k].b.y=-(nowa*2.0+nowc)/nowb;
		    if (dcmp(nowb)<0) swap(line[k].a,line[k].b);
		}
		if (!mark){
			printf("No\n");
			continue;
		}
		init();
		for (int  j=1;j<=k;j++)
		 cut(line[j].a,line[j].b);
		double area=0; p[m]=p[0];
		for (int j=1;j<m;j++) area+=cross(p[j]-p[0],p[j+1]-p[0]);
		area=fabs(area);
		if (m>2&&dcmp(area)>0) printf("Yes\n");
		else printf("No\n");
	}
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 1755 Triathlon 判断不等式有解+半平面的交

题目描述:http://poj.org/problem?id=1755 解题思路: 假设一个队员的
  • f_cpp
  • f_cpp
  • 2014年11月22日 09:34
  • 164

POJ 1755 Triathlon(半平面交解不等式)

转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526       by---cxlove 题目:铁人三项,每个人在某...

poj 1755 Triathlon 半平面交求不等式的 是否为空集-------构造有向直线

题目来源: http://poj.org/problem?id=1755 分析: 设比赛总长度为 1, 其中游泳长度为x, 自行车长度为y, 赛跑长度为 1 - x - y, 则选手 i 打败 ...

poj 1755 Triathlon(半平面交解不等式)

n个人参加铁人三项的比赛,给出他们每一项的速度u,v,w,裁判可以决定每一项的距离,问是否存在一种安排,使得这个人能够赢。 对于每个人,如果存在安排的方法就输出Yes,没有就输出No。 这里可以假...

poj1755 半平面交解不等式组

题目链接:http://poj.org/problem?id=1755 题意:铁人三项比赛,给出n个人进行每一项的速度vi, ui, wi;  对每个人判断,通过改变3项比赛的路程,是否能让该人获胜...

poj1755 Triathlon 半平面交

题目链接:http://poj.org/problem?id=1755 题目意思:给出N个运动员的游泳,骑车,跑步的三个速度u,v,w,问对于每一个运动员可不可以在比赛中获得第一名。 解题思路:刚...
  • ssslpk
  • ssslpk
  • 2012年07月28日 00:19
  • 891

poj 1755 Triathlon 半平面交

题目链接题意:给出n个人,还有他们在铁人三项中游泳、自行车和赛跑的速度,问通过合理设计三个比赛的长度,哪些人可能成为冠军(不能是并列的)。解法:设行程总长度为1,其中游泳的长度为x,自行车的长度为y,...

POJ 1755 Triathlon【半平面交】

题意:在铁人三项比赛中,给出每个人游泳,骑车,跑步的速度,你可以任意安排游泳,骑车,跑步的路程(路程非0),若某人可以获得第一(严格),则输出Yes,否则No 分析:将三个路程其中一个设为1,剩下两...

poj 1755 Triathlon(半平面交解可行域)

Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4990   Accepted: 1251 ...

poj1755Triathlon【半平面交】

Language: Default Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Subm...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1755 Triathlon (半平面交求解不等式组)
举报原因:
原因补充:

(最多只允许输入30个字)