传送门
代码能力大屠杀系列
挺套路的题。
这个一个网格图,
m
只有3,那么第一想法就是对网格图分治。
对于分治到的区间
然后第二个分治。
对于分治到的区间,按时间顺序处理每个询问操作,对于中线上的每个点,求出最短路树,如果一个修改操作的两个点的最短路在当前这个区间中,就修改,修改就相当于链覆盖,询问操作也就是询问一个点的权值,链剖一下就可以了。
每个修改操作只会执行一次,每次复杂度是
所以总复杂度就是 O(nlog2n)
应该也可以只分治一次吧
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
const int N=300010;
const ll INF=1e18;
int n,m,q,cnt,CNT,TI,G[N];
int id[4][N],xx[N],yy[N],up[N],dwn[N],iQ[N];
ll d[5][N],pre[5][N],ans[N],w;
struct edge{
int t,nx;
ll w;
}E[N<<2];
struct Que{
int x,y,opt,g,gg;
ll w;
}Q[N],a[N],b[N];
struct PAR{
int x,y,g; ll D;
PAR(int _x=0,int _y=0,int _g=0):x(_x),y(_y),g(_g),D(INF){}
}p[N],A[N],B[N];
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void rea(int &x){
char c=nc(); x=0;
for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}
inline void rea(ll &x){
char c=nc(); x=0;
for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}
inline void add(int x,int y,ll z){
E[++cnt].t=y; E[cnt].nx=G[x]; E[cnt].w=z; G[x]=cnt;
E[++cnt].t=x; E[cnt].nx=G[y]; E[cnt].w=z; G[y]=cnt;
}
struct STP{
int x,y; ll dis;
STP(int _x,int _y,ll _d):x(_x),y(_y),dis(_d){}
STP(){}
friend bool operator <(STP a,STP b){
return a.dis>b.dis;
}
};
priority_queue<STP> pq;
inline void DIJ(int x,int y,ll *d,ll *pre,int l,int r){
for(int i=1;i<=m;i++)
for(int j=l;j<=r;j++)
d[id[i][j]]=INF,pre[id[i][j]]=0;
d[id[x][y]]=0; pq.push(STP(x,y,0));
while(!pq.empty()){
STP cur=pq.top(); pq.pop();
int x=id[cur.x][cur.y];
if(cur.dis!=d[x]) continue;
for(int i=G[x];i;i=E[i].nx)
if(yy[E[i].t]>=l && yy[E[i].t]<=r && d[E[i].t]>d[x]+E[i].w){
d[E[i].t]=d[x]+E[i].w; pre[E[i].t]=x;
pq.push(STP(xx[E[i].t],yy[E[i].t],d[E[i].t]));
}
}
}
void GETSP(int l,int r,int L,int R){
if(L>R) return ;
int mid=l+r>>1,t1=0,t2=0;
for(int i=1;i<=m;i++)
DIJ(i,mid,d[i],pre[i],l,r);
for(int i=L;i<=R;i++){
for(int j=1;j<=m;j++)
if(d[j][p[i].x]+d[j][p[i].y]<p[i].D) p[i].D=d[j][p[i].x]+d[j][p[i].y],Q[p[i].g].g=mid;
if(yy[p[i].x]<mid && yy[p[i].y]<mid) A[++t1]=p[i];
else if(yy[p[i].x]>mid && yy[p[i].y]>mid) B[++t2]=p[i];
}
for(int i=1;i<=t1;i++) p[L+i-1]=A[i];
for(int i=1;i<=t2;i++) p[L+t1+i-1]=B[i];
if(l<mid) GETSP(l,mid-1,L,L+t1-1);
if(mid<r) GETSP(mid+1,r,L+t1,L+t1+t2-1);
}
struct TREE{
int cnt,rt,tms,G[N],p[N],top[N],size[N],fa[N],dpt[N],son[N],tt[N];
ll bit[N];
edge E[N<<1];
void add(int x,int y){
E[++cnt].t=y; E[cnt].nx=G[x]; G[x]=cnt;
E[++cnt].t=x; E[cnt].nx=G[y]; G[y]=cnt;
}
void dfs1(int x,int f){
fa[x]=f; dpt[x]=dpt[f]+1; size[x]=1;
for(int i=G[x];i;i=E[i].nx)
if(E[i].t!=f){
dfs1(E[i].t,x);
size[x]+=size[E[i].t];
if(size[E[i].t]>size[son[x]]) son[x]=E[i].t;
}
}
void dfs2(int x,int tp){
p[x]=++tms; top[x]=tp;
if(son[x]) dfs2(son[x],tp);
for(int i=G[x];i;i=E[i].nx)
if(E[i].t!=fa[x] && E[i].t!=son[x]) dfs2(E[i].t,E[i].t);
}
void build(int RT){
rt=RT;
dfs1(RT,0);
dfs2(RT,RT);
}
inline void ADD(int x,ll c){
for(;x<=n*m;x+=x&-x)
if(TI==tt[x]) bit[x]+=c;
else tt[x]=TI,bit[x]=c;
}
inline ll QUERY(int x){
ll ret=0;
for(;x;x-=x&-x) ret+=(TI==tt[x])*bit[x];
return ret;
}
void insert(int x,int y,ll c){
while(top[x]!=top[y]){
if(dpt[top[x]]<dpt[top[y]]) swap(x,y);
ADD(p[top[x]],c); ADD(p[x]+1,-c);
x=fa[top[x]];
}
if(dpt[x]<dpt[y]) swap(x,y);
ADD(p[y],c); ADD(p[x]+1,-c);
}
ll query(int x){
return QUERY(p[x]);
}
void clear(int l,int r){
++TI;
for(int i=1;i<=m;i++)
for(int j=l;j<=r;j++){
int x=id[i][j];
son[x]=size[x]=dpt[x]=fa[x]=top[x]=G[x]=0;
}
cnt=tms=0;
}
}tr[4];
void SOLVE(int l,int r,int L,int R){
if(L>R) return ;
int mid=l+r>>1,t1=0,t2=0;
for(int i=1;i<=m;i++){
tr[i].clear(l,r);
DIJ(i,mid,d[i],pre[i],l,r);
for(int j=1;j<=m;j++)
for(int k=l;k<=r;k++)
if(pre[i][id[j][k]]) tr[i].add(id[j][k],pre[i][id[j][k]]);
tr[i].build(id[i][mid]);
}
for(int i=L;i<=R;i++){
if(Q[i].opt==1){
if(Q[i].g==mid){
ll md=INF; int pos=-1;
for(int j=1;j<=m;j++)
if(d[j][Q[i].x]+d[j][Q[i].y]<md) md=d[j][Q[i].x]+d[j][Q[i].y],pos=j;
tr[pos].insert(Q[i].x,Q[i].y,Q[i].w);
}
else if(Q[i].g<mid) a[++t1]=Q[i];
else b[++t2]=Q[i];
}
else{
for(int j=1;j<=m;j++)
ans[Q[i].gg]+=tr[j].query(Q[i].x);
if(yy[Q[i].x]<mid) a[++t1]=Q[i];
else if(yy[Q[i].x]>mid) b[++t2]=Q[i];
}
}
for(int i=1;i<=t1;i++) Q[L+i-1]=a[i];
for(int i=1;i<=t2;i++) Q[L+t1+i-1]=b[i];
if(l<mid) SOLVE(l,mid-1,L,L+t1-1);
if(mid<r) SOLVE(mid+1,r,L+t1,L+t1+t2-1);
}
void PutAns(ll x){
if(x>=10) PutAns(x/10);
putchar(x%10+'0');
}
int main(){
rea(m); rea(n); rea(q); ll x;
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
id[i][j]=(i-1)*n+j,xx[id[i][j]]=i,yy[id[i][j]]=j;
for(int i=1;i<m;i++)
for(int j=1;j<=n;j++)
rea(x),add(id[i][j],id[i+1][j],x),up[id[i+1][j]]=cnt,dwn[id[i][j]]=cnt-1;
for(int i=1;i<=m;i++)
for(int j=1;j<n;j++)
rea(x),add(id[i][j],id[i][j+1],x);
for(int i=1,x,y;i<=q;i++){
rea(Q[i].opt);
if(Q[i].opt==1){
rea(x); rea(y); Q[i].x=id[x][y];
rea(x); rea(y); Q[i].y=id[x][y];
rea(Q[i].w); Q[i].gg=i;
p[++CNT]=PAR(Q[i].x,Q[i].y,i);
}
else
rea(x),rea(y),Q[i].x=id[x][y],Q[i].gg=i,iQ[i]=1;
}
GETSP(1,n,1,CNT);
SOLVE(1,n,1,q);
for(int i=1;i<=q;i++)
if(iQ[i]) PutAns(ans[i]),putchar('\n');
return 0;
}