多项式
由若干个单项式相加组成的代数式叫做多项式
形如: f(x)=∑ni=0aixi f ( x ) = ∑ i = 0 n a i x i ,
deg f(x) deg f ( x ) 称为 f f 的度,是
最高次项的次数。
生成函数
形如 ∑∞i=0aixi ∑ i = 0 ∞ a i x i
生成函数又称母函数,往往和多项式算法联系起来起到优化转移的作用
多项式算法
加减法
多项式加减法比较简单
若 f(x)=∑ni=0aixi f ( x ) = ∑ i = 0 n a i x i , g(x)=∑ni=0bixi g ( x ) = ∑ i = 0 n b i x i
则 (f±g)(x)=∑ni=0(ai±bi)xi ( f ± g ) ( x ) = ∑ i = 0 n ( a i ± b i ) x i
代码实现也比较简单
乘法
多项式乘法是所有多项式算法的基础,也是生成函数的卷积运算
若 f(x)=∑ni=0aixi f ( x ) = ∑ i = 0 n a i x i , g(x)=∑ni=0bixi g ( x ) = ∑ i = 0 n b i x i
则 (f×g)(x)=∑2ni=0∑ij=0aj×bi−jxi ( f × g ) ( x ) = ∑ i = 0 2 n ∑ j = 0 i a j × b i − j x i
朴素的多项式乘法是 O(n2) O ( n 2 ) 的,但FFT(快速傅里叶变换)运用复数根的特性可以在 O(nlogn) O ( n log n ) 的复杂度内实现多项式的系数表达和点值表达的转化,运用点值表达实现 O(n) O ( n ) 的相乘,总复杂度就是 O(nlogn) O ( n log n ) ,但是因为常数过大,往往小范围会使用暴力。
inline void FFT(E *a,int r){
for(int i=0;i<n;i++) if(rev[i]>i) swap(a[rev[i]],a[i]);
for(int i=1;i<n;i<<=1){
E wn(cos(M_PI/i),r*sin(M_PI/i));
for(int j=0;j<n;j+=(i<<1)){
E w(1,0);
for(int k=0;k<i;k++,w=w*wn){
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y; a[j+k+i]=x-y;
}
}
}
if(r==-1) for(int i=0;i<n;i++) a[i].real/=n;
}
运用生成函数的计数问题往往会对一个质数取模,如果这个质数可以表示成 k×2n+1 k × 2 n + 1 ,其中 k k 为奇数 大于多项式的度数,那么就可以用这个质数的原根代替复数根,实现多项式的系数对一个质数取模,这个算法就是NTT(快速数论变换),这种模数称为NTT模数。
inline void Pre(int n){
num=n;
int g=Pow(3,(P-1)/num);
w[0][0]=w[1][0]=1; for(int i=1;i<num;i++) w[0][i]=1LL*w[0][i-1]*g%P;
for(int i=1;i<num;i++) w[1][i]=w[0][num-i];
}
inline void NTT(int *a,int n,int r){
for(int i=1;i<n;i++) if(rev[i]>i) swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=0;k<i;k++){
int x=a[j+k],y=1LL*a[j+k+i]*w[r][num/(i<<1)*k]%P;
a[j+k]=(x+y)%P; a[j+k+i]=(x+P-y)%P;
}
if(!r) for(int i=0,inv=Pow(n,P-2);i<n;i++) a[i]=1LL*a[i]*inv%P;
}
不过有些丧心病狂的题的模数不是NTT模数,这个时候需要CRT合并。
多项式求逆
比如BZOJ4555
最后会得到 f(x)=f(x)g(x)+1 f ( x ) =