关闭

poj2486

48人阅读 评论(0) 收藏 举报
分类:
/*
    题意:给你一个树, 树上的每个节点都会有点权, 现在小红帽从1节点开始去其他子树, 小红帽每到一个地方便拿走这个树的结点的点权
    ,小红帽可以回来, 问你小红帽在不超过k步的情况下拿走的最大点权是多少?
    tag:树形dp
    分析:我们定义dp[u][k][0]为从u结点到各个子树走不超过k步回来的情况下拿到的最大权值, dp[u][k][1]为从u结点到各个子树不超过k步不回来
    的情况下拿到的最大权值。那么dp[u][k][0] = max(dp[v][j-2][0] + dp[u][k-j][0])
    dp[u][k][1] = max(dp[v][j-1][1] + dp[u][k-j][0])
    dp[u][k][1] = max(dp[v][j-2][0] + dp[u][k-j][1])
    注意计算顺序,我们要将k从大到小枚举才能保证走其他子树的时候不走v这个子树。
*/

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>

using namespace std;
const int maxn = 200 + 10;
int N, K;
int nweight[maxn];
vector<int> G[maxn];

int dp[maxn][maxn][2];

void dfs(int fa, int u) {
    for(int i=0; i<=K; i++)
        dp[u][i][0] = dp[u][i][1] = nweight[u];
    for(int i=0; i<G[u].size(); i++) {
        int v = G[u][i];
        if(v == fa) continue;
        dfs(u, v);
        for(int k=K; k>=0; k--)    //从大到小防止重复计算
            for(int j=0; j<=k; j++) {
                int ans = dp[u][k-j][0];
                if(j-2>=0) ans += dp[v][j-2][0];
                dp[u][k][0] = max(dp[u][k][0], ans);
                ans = dp[u][k-j][0];
                if(j-1>=0) ans += dp[v][j-1][1];
                dp[u][k][1] = max(dp[u][k][1], ans);
                ans = dp[u][k-j][1];
                if(j-2>=0) ans += dp[v][j-2][0];
                dp[u][k][1] = max(dp[u][k][1], ans);
            }
    }
}

int main() {
    while(scanf("%d%d", &N, &K) == 2) {
        for(int i=1; i<=N; i++){
            scanf("%d", &nweight[i]);
            G[i].clear();
        }
        for(int i=1; i<=N-1; i++) {
            int u, v; scanf("%d%d", &u, &v);
            G[u].push_back(v);
            G[v].push_back(u);
        }
        dfs(-1, 1);
        int ans = max(dp[1][K][0], dp[1][K][1]);
        printf("%d\n", ans);
    }
    return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2098次
    • 积分:172
    • 等级:
    • 排名:千里之外
    • 原创:16篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档