第九周项目3-稀疏矩阵的三元组表示的实现及应用(2)

问题及代码:

/*

copyright (t) 2016,烟台大学计算机学院

*All rights reserved.

*文件名称:1.cpp

*作者:常锐

*完成日期:2016年10月28日

*版本号:v1.0

*问题描述:采用三元组存储稀疏矩阵,设计两个稀疏矩阵相加的运算算法 
 提示1:两个行数、列数相同的矩阵可以相加 
 提示2:充分利用已经建立好的算法库解决问题 
 提示3:教材例6.3已经给出两个稀疏矩阵相加的运算的算法,但未利用基本运算。请比较这两种方案 

*输入描述:无

*程序输出:测试结果

*/

tup.h:

#include <stdio.h>
#define MaxSize 100
#define M 6                                           //定义矩阵为3行4列
#define N 7
typedef int ElemType;
typedef struct
{
    int r;
    int c;
    ElemType d;
} TupNode;
typedef struct
{
    int rows;
    int cols;
    int nums;
    TupNode data[MaxSize];
} TSMatrix;
void CreatMat(TSMatrix &t,ElemType A[M][N]);          //从一个二维稀疏矩阵创建其三元组表示
bool Assign(TSMatrix t,ElemType &x,int i,int j);      //将指定位置的元素值赋给变量
bool Value(TSMatrix &t,ElemType x,int i,int j);       //三元组元素取值
void DispMat(TSMatrix t);                             //输出三元组
void TranTat(TSMatrix t,TSMatrix &tb);                //矩阵转置
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c);       //两稀疏矩阵相加

tup.cpp:

#include "tup.h"
void CreatMat(TSMatrix &t,ElemType A[M][N])           //从一个二维稀疏矩阵创建其三元组表示
{
    int i,j;
    t.rows=M,t.cols=N,t.nums=0;                       //行号、列号、非零元素个数初始化
    for(i=0;i<M;i++)                                  //行序方式扫描二维稀疏矩阵A,非零元素插入三元组t
    {
        for(j=0;j<N;j++)
        {
            if(A[i][j]!=0)                            //记录非零元素所在行列号,元素值赋给data[],非零元素个数+1
            {
                t.data[t.nums].r=i;
                t.data[t.nums].c=j;
                t.data[t.nums].d=A[i][j];
                t.nums++;
            }
        }
    }
}
bool Assign(TSMatrix t,ElemType &x,int i,int j)       //将指定位置的元素值赋给变量
{
    int k=0;                                          //从第1个非零元素开始遍历
    if(i>=t.rows || j>=t.cols)                        //i.j不符合要求,返回false
        return false;
    while(k<t.nums && i>t.data[k].r)                  //按行查找
        k++;
    while(k<t.nums && i==t.data[k].r && j>t.data[k].c) //在查找到的行按列查找
        k++;
    if(t.data[k].r==i && t.data[k].c==j)              //找到第i行第j列的元素,将值赋给x
        x=t.data[k].d;
    else                                              //k=t.nums,未找到
        x=0;
    return true;
}
bool Value(TSMatrix &t,ElemType x,int i,int j)        //三元组元素取值
{
    int k=0;
    int k1;
    if(i>=t.rows || j>=t.cols)                        //i.j不符合要求,返回false
        return false;
    while(k<t.nums && i>t.data[k].r)                  //按行查找
        k++;
    while(k<t.nums && i==t.data[k].r && j>t.data[k].c) //在查找到的行按列查找
        k++;
    if(t.data[k].r==i && t.data[k].c==j)              //存在第i行第j列这样的元素,直接赋值x
        t.data[k].d=x;
    else                                              //其它情况,不存在这样的元素,插入一个元素
    {
        for(k1=t.nums-1;k1>=k;k1--)                   //依次移动“腾空位”
        {
            t.data[k1+1].r=t.data[k1].r;
            t.data[k1+1].c=t.data[k1].c;
            t.data[k1+1].d=t.data[k1].d;
        }
        t.data[k].r=i;                                //在腾出的空位处插入指定元素x的行列号及元素值
        t.data[k].c=j;
        t.data[k].d=x;
        t.nums++;
    }
    return true;
}
void DispMat(TSMatrix t)                              //输出三元组
{
    int i;
    if(t.nums<=0)
        return;
    printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);
    printf("\t------------------\n");
    for(i=0;i<t.nums;i++)
        printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d);
}
void TranTat(TSMatrix t,TSMatrix &tb)                 //矩阵转置
{
    int i,j;
    int k=0;
    tb.rows=t.cols,tb.cols=t.rows,tb.nums=t.nums;
    if(t.nums!=0)
    {
        for(i=0;i<t.cols;i++)
        {
            for(j=0;j<t.nums;j++)
            {
                if(t.data[j].c==i)                    //行列互换
                {
                    tb.data[k].r=t.data[j].c;
                    tb.data[k].c=t.data[j].r;
                    tb.data[k].d=t.data[j].d;
                    k++;
                }
            }
        }
    }
}
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c)        //两稀疏矩阵相加
{
    int i=0,j=0,k=0;
    ElemType v;
    if(a.rows!=b.rows || a.cols!=b.cols)              //行数或列数不等时不能相加
        return false;
    c.rows=a.rows,c.cols=a.cols;                      //c的行列数与a的相同
    while(i<a.nums && j<b.nums)                       //处理a.b中的每个元素
    {
        if(a.data[i].r==b.data[j].r)                  //行号相等时
        {
            if(a.data[i].c<b.data[j].c)               //a元素列号小于b元素列号时
            {
                c.data[k].r=a.data[i].r;              //a的元素添加到c中
                c.data[k].c=a.data[i].c;
                c.data[k].d=a.data[i].d;
                k++,i++;
            }
            else if(a.data[i].c>b.data[j].c)          //a元素列号大于b元素列号时
            {
                c.data[k].r=b.data[j].r;              //b的元素添加到c中
                c.data[k].c=b.data[j].c;
                c.data[k].d=b.data[j].d;
                k++,j++;
            }
            else                                      //a元素列号等于b元素列号时
            {
                v=a.data[i].d+b.data[j].d;            //此时对应位置行列号相等,相加
                if(v!=0)                              //只将不为0的结果添加到c中
                {
                    c.data[k].r=a.data[i].r;
                    c.data[k].c=a.data[i].c;
                    c.data[k].d=v;
                    k++;
                }
                i++,j++;
            }
        }
        else if(a.data[i].r<b.data[j].r)              //a元素行号小于b元素行号时
        {
            c.data[k].r=a.data[i].r;                  //a元素添加到c中
            c.data[k].c=a.data[i].c;
            c.data[k].d=a.data[i].d;
            k++,i++;
        }
        else                                          //a元素行号大于b元素行号时
        {
            c.data[k].r=b.data[j].r;                  //b元素添加到c中
            c.data[k].c=b.data[j].c;
            c.data[k].d=b.data[j].d;
            k++,j++;
        }
        c.nums=k;
    }
    return true;
}

main.cpp:(方法一)

#include <stdio.h>
#include "tup.h"
int main()
{
    TSMatrix tA,tB,tC;
    int A[M][N]=                       //直接给定6行7列的稀疏矩阵
    {
        {0,1,0,0,0,0,0},
        {0,2,0,0,0,0,0},
        {3,0,0,0,0,0,0},
        {0,0,0,5,0,0,0},
        {0,0,0,0,6,0,0},
        {0,0,0,0,0,7,4}
    };
    int B[M][N]=
    {
        {0,0,10,0,0,0,0},
        {0,0,0,20,0,0,0},
        {0,0,0,0,0,0,0},
        {0,0,0,50,0,0,0},
        {0,0,20,0,0,0,0},
        {0,0,0,10,0,0,4}
    };
    CreatMat(tA,A);
    CreatMat(tB,B);
    printf("A:\n");
    DispMat(tA);
    printf("B:\n");
    DispMat(tB);
    if(MatAdd(tA,tB,tC))
    {
        printf("稀疏矩阵A.B相加结果为:\n");
        DispMat(tC);
    }
    else
    {
        printf("相加失败\n");
    }
    return 0;
}

(方法二)

#include <stdio.h>
#include "tup.h"
bool MatAdd2(TSMatrix a,TSMatrix b,TSMatrix &c)
{
    int i,j;
    ElemType va,vb,vc;
    if (a.rows!=b.rows || a.cols!=b.cols)
        return false;                        //行数或列数不等时不能进行相加运算
    c.rows=a.rows;
    c.cols=a.cols;                           //c的行列数与a的相同
    c.nums=0;
    for(i=0; i<M; i++)
    {
        for(j=0; j<N; j++)
        {
            Assign(a,va,i,j);
            Assign(b,vb,i,j);
            vc=va+vb;
            if(vc)
                Value(c,vc,i,j);
        }
    }
    return true;
}

int main()
{
    TSMatrix ta,tb,tc;
    int A[M][N]=
    {
        {0,1,0,0,0,0,0},
        {0,2,0,0,0,0,0},
        {3,0,0,0,0,0,0},
        {0,0,0,5,0,0,0},
        {0,0,0,0,6,0,0},
        {0,0,0,0,0,7,4}
    };
    int B[M][N]=
    {
        {0,0,10,0,0,0,0},
        {0,0,0,20,0,0,0},
        {0,0,0,0,0,0,0},
        {0,0,0,50,0,0,0},
        {0,0,20,0,0,0,0},
        {0,0,0,10,0,0,4}
    };
    CreatMat(ta,A);
    CreatMat(tb,B);
    printf("A:\n");
    DispMat(ta);
    printf("B:\n");
    DispMat(tb);
    if(MatAdd2(ta,tb,tc))
    {
        printf("稀疏矩阵A.B相加结果为:\n");
        DispMat(tc);
    }
    else
    {
        printf("相加失败\n");
    }
    return 0;
}

运行结果:(方法一、二运行结果相同)

知识点总结:

        稀疏矩阵的应用——矩阵相加运算

心得体会:

        通过主函数的两种不同写法,我们不难看出:

        方法一的求解方法参考了课本140页例6.3的做法,没有利用算法库中已经实现的Assign和Value两个基本运算,而是直接e采取了更为直接的方法去完成。用i和j两个变量扫描三元组a和b,按行序优先的原则进行处理,将结果存放于c中。当a的当前元素和b的当前元素的行号和列号均相等时,将它们的值相加,只有在相加值不为0时,才在c中添加一个新的元素;而方法二利用了算法库中的基本运算。

        对比两种方案,方法二利用Assign和Value两个基本运算的方案,可以在只知道“矩阵加法是对应位置的元素相加”的基础上就可以求解;而“参考解答2”则不得不关注在数据存储层面的细节,以致于矩阵加法的规则都不容易看出来了。而方法一中繁杂的代码,违反了程序设计中诸多的原则(例如模块化),相对“参考解答1”的简洁中透出的优雅,该不是学习者效仿的思维。(此部分引用了参考解答中的分析,受益匪浅)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值