又要从头学数据结构了。
默默挨个实现一遍
实现的功能包括两个矩阵的加减 相乘 还有转置
有点繁琐
凑合看吧
#include <stdio.h>
#include <malloc.h>
typedef int ElemType;// 稀疏矩阵的十字链表存储表示
typedef struct OLNode
{
int i,j; //该非零元的列和下标
ElemType e; //非零元素值
struct OLNode *right,*down; //该非零元所在行表和列表的后继链域
}OLNode,*OLink;
typedef struct
{
OLink *rhead,*chead;
int mu,nu,tu; //稀疏矩阵的行数、列数和非零元个数
}CrossList;
//初始化M
int InitSMatrix(CrossList *M)
{
(*M).rhead=(*M).chead=NULL;
(*M).mu=(*M).nu=(*M).tu=0;
return 1;
}
//销毁稀疏矩阵M
int DestroySMatrix(CrossList *M)
{
int i;
OLNode *p,*q;
for(i=1;i<=(*M).mu;i++)//按行释放节点
{
p=*((*M).rhead+i);
while(p)
{
q=p;
p=p->right;
free(q);
}
}
free((*M).rhead);
free((*M).chead);
(*M).rhead=(*M).chead=NULL;
(*M).mu=(*M).nu=(*M).tu=0;
return 1;
}
// 创建稀疏矩阵M,采用十字链表储存表示
int CreateSMatrix(CrossList *M)
{
int i,j,k,m,n,t;
ElemType e;
OLNode *p,*q;
if((*M).rhead)
DestroySMatrix(M);
printf("请输入稀疏矩阵的行数 列数 非零元素个数:(space)");
scanf("%d %d %d",&m,&n,&t);
(*M).mu=m;
(*M).nu=n;
(*M).tu=t;
//初始化行链表头
(*M).rhead=(OLink*)malloc((m+1)*sizeof(OLink));
if(!(*M).rhead)
exit(0);
//初始化列链表头
(*M).chead= (OLink*)malloc((n+1)*sizeof(OLink));
if(!(*M).chead)
exit(0);
for(k=1;k<=m;k++)//初始化行头指针向量 各行链表为空链表
(*M).rhead[k]=NULL;
for(k=1;k<=n;k++)// 初始化列头指针向量;各列链表为空链表
(*M).chead[k]=NULL;
printf("请按任意次序输入%d个非零元的行 列 元素值:(空格)\n",(*M).tu);
for(k=0;k<t;k++)
{
scanf("%d %d %d",&i,&j,&e);
p=(OLNode*)malloc(sizeof(OLNode));
if(!p)
exit(0);
p->i=i; // 生成结点
p->j=j;
p->e=e;
if((*M).rhead[i]==NULL||(*M).rhead[i]->j>j)
{
// p插在该行的第一个结点处
p->right=(*M).rhead[i];
(*M).rhead[i]=p;
}
else // 寻查在行表中的插入位置
{
//从该行的行链表头开始,直到找到
for(q=(*M).rhead[i]; q->right && q->right->j < j;q = q->right)
;
p->right=q->right; // 完成行插入
q->right=p;
}
if((*M).chead[j] == NULL || (*M).chead[j]->i > i)
{
// p插在该列的第一个结点处
p->down = (*M).chead[j];
(*M).chead[j] = p;
}
else // 寻查在列表中的插入位置
{
for(q = (*M).chead[j];q->down && q->down->i < i;q = q->down)
;
p->down=q->down; // 完成列插入
q->down=p;
}
}
return 1;
}
// 按行或按列输出稀疏矩阵M
int PrintSMatrix(CrossList M)
{
int i,j;
OLink p;
printf("%d行%d列%d个非零元素\n",M.mu,M.nu,M.tu);
printf("请输入选择(1.按行输出 2.按列输出): ");
scanf("%d",&i);
switch(i)
{
case 1:
for(j=1;j<=M.mu;j++)
{
p=M.rhead[j];
while(p)
{
printf("%d行%d列值为%d\n",p->i,p->j,p->e);
p=p->right;
}
}
break;
case 2:
for(j=1;j<=M.nu;j++)
{
p=M.chead[j];
while(p)
{
printf("%d行%d列值为%d\n",p->i,p->j,p->e);
p=p->down;
}
}
}
return 1;
}
// 由稀疏矩阵M复制得到T
int CopySMatrix(CrossList M,CrossList *T)
{
int i;
OLink p,q,q1,q2;
if((*T).rhead)
DestroySMatrix(T);
(*T).mu=M.mu;
(*T).nu=M.nu;
(*T).tu=M.tu;
(*T).rhead=(OLink*)malloc((M.mu+1)*sizeof(OLink));
if(!(*T).rhead)
exit(0);
(*T).chead=(OLink*)malloc((M.nu+1)*sizeof(OLink));
if(!(*T).chead)
exit(0);
for(i=1;i<=M.mu;i++) // 初始化矩阵T的行头指针向量;各行链表为空链表
(*T).rhead[i]=NULL;
for(i=1;i<=M.nu;i++) // 初始化矩阵T的列头指针向量;各列链表为空链表
(*T).chead[i]=NULL;
for(i=1;i<=M.mu;i++) // 按行复制
{
p=M.rhead[i];
while(p) // 没到行尾
{
q=(OLNode*)malloc(sizeof(OLNode)); // 生成结点
if(!q)
exit(0);
q->i=p->i; // 给结点赋值
q->j=p->j;
q->e=p->e;
if(!(*T).rhead[i]) // 插在行表头
(*T).rhead[i]=q1=q;
else // 插在行表尾
q1=q1->right=q;
if(!(*T).chead[q->j]) // 插在列表头
{
(*T).chead[q->j]=q;
q->down=NULL;
}
else // 插在列表尾
{
q2=(*T).chead[q->j];
while(q2->down)
q2=q2->down;
q2->down=q;
q->down=NULL;
}
p=p->right;
}
q->right=NULL;
}
return 1;
}
// 求稀疏矩阵的和Q=M+N
int AddSMatrix(CrossList M,CrossList N,CrossList *Q)
{
int i,k;
OLink p,pq,pm,pn;
OLink *col;
if(M.mu!=N.mu||M.nu!=N.nu)
{
printf("两个矩阵不是同类型的,不能相加\n");
exit(0);
}
(*Q).mu=M.mu; // 初始化Q矩阵
(*Q).nu=M.nu;
(*Q).tu=0; // 元素个数的初值
(*Q).rhead=(OLink*)malloc(((*Q).mu+1)*sizeof(OLink));
if(!(*Q).rhead)
exit(0);
(*Q).chead=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink));
if(!(*Q).chead)
exit(0);
for(k=1;k<=(*Q).mu;k++) // 初始化Q的行头指针向量;各行链表为空链表
(*Q).rhead[k]=NULL;
for(k=1;k<=(*Q).nu;k++) // 初始化Q的列头指针向量;各列链表为空链表
(*Q).chead[k]=NULL;
// 生成指向列的最后结点的数组
col=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink));
if(!col)
exit(0);
for(k=1;k<=(*Q).nu;k++) // 赋初值
col[k]=NULL;
for(i=1;i<=M.mu;i++) // 按行的顺序相加
{
pm=M.rhead[i]; // pm指向矩阵M的第i行的第1个结点
pn=N.rhead[i]; // pn指向矩阵N的第i行的第1个结点
while(pm&&pn) // pm和pn均不空
{
if(pm->j<pn->j) // 矩阵M当前结点的列小于矩阵N当前结点的列
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pm->j;
p->e=pm->e;
p->right=NULL;
pm=pm->right; // pm指针向右移
}
else if(pm->j>pn->j)// 矩阵M当前结点的列大于矩阵N当前结点的列
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pn->j;
p->e=pn->e;
p->right=NULL;
pn=pn->right; // pn指针向右移
}
// 矩阵M、N当前结点的列相等且两元素之和不为0
else if(pm->e+pn->e)
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pn->j;
p->e=pm->e+pn->e;
p->right=NULL;
pm=pm->right; // pm指针向右移
pn=pn->right; // pn指针向右移
}
else // 矩阵M、N当前结点的列相等且两元素之和为0
{
pm=pm->right; // pm指针向右移
pn=pn->right; // pn指针向右移
continue;
}
if((*Q).rhead[i]==NULL) // p为该行的第1个结点
// p插在该行的表头且pq指向p(该行的最后一个结点)
(*Q).rhead[i]=pq=p;
else // 插在pq所指结点之后
{
pq->right=p; // 完成行插入
pq=pq->right; // pq指向该行的最后一个结点
}
if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
// p插在该列的表头且col[p->j]指向p
(*Q).chead[p->j]=col[p->j]=p;
else // 插在col[p->]所指结点之后
{
col[p->j]->down=p; // 完成列插入
// col[p->j]指向该列的最后一个结点
col[p->j]=col[p->j]->down;
}
}
while(pm) // 将矩阵M该行的剩余元素插入矩阵Q
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pm->j;
p->e=pm->e;
p->right=NULL;
pm=pm->right; // pm指针向右移
if((*Q).rhead[i] == NULL) // p为该行的第1个结点
// p插在该行的表头且pq指向p(该行的最后一个结点)
(*Q).rhead[i] = pq = p;
else // 插在pq所指结点之后
{
pq->right=p; // 完成行插入
pq=pq->right; // pq指向该行的最后一个结点
}
if((*Q).chead[p->j] == NULL) // p为该列的第1个结点
// p插在该列的表头且col[p->j]指向p
(*Q).chead[p->j] = col[p->j] = p;
else // 插在col[p->j]所指结点之后
{
col[p->j]->down=p; // 完成列插入
// col[p->j]指向该列的最后一个结点
col[p->j]=col[p->j]->down;
}
}
while(pn) // 将矩阵N该行的剩余元素插入矩阵Q
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pn->j;
p->e=pn->e;
p->right=NULL;
pn=pn->right; // pm指针向右移
if((*Q).rhead[i]==NULL) // p为该行的第1个结点
// p插在该行的表头且pq指向p(该行的最后一个结点)
(*Q).rhead[i]=pq=p;
else // 插在pq所指结点之后
{
pq->right=p; // 完成行插入
pq=pq->right; // pq指向该行的最后一个结点
}
if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
// p插在该列的表头且col[p->j]指向p
(*Q).chead[p->j]=col[p->j]=p;
else // 插在col[p->j]所指结点之后
{
col[p->j]->down=p; // 完成列插入
// col[p->j]指向该列的最后一个结点
col[p->j]=col[p->j]->down;
}
}
}
for(k=1;k<=(*Q).nu;k++)
if(col[k]) // k列有结点
col[k]->down=NULL; // 令该列最后一个结点的down指针为空
free(col);
return 1;
}
// 求稀疏矩阵的差Q=M-N
int SubtSMatrix(CrossList M,CrossList N,CrossList *Q)
{
int i,k;
OLink p,pq,pm,pn;
OLink *col;
if(M.mu!=N.mu||M.nu!=N.nu)
{
printf("两个矩阵不是同类型的,不能相加\n");
exit(0);
}
(*Q).mu=M.mu; // 初始化Q矩阵
(*Q).nu=M.nu;
(*Q).tu=0; // 元素个数的初值
(*Q).rhead=(OLink*)malloc(((*Q).mu+1)*sizeof(OLink));
if(!(*Q).rhead)
exit(0);
(*Q).chead=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink));
if(!(*Q).chead)
exit(0);
for(k=1;k<=(*Q).mu;k++) // 初始化Q的行头指针向量;各行链表为空链表
(*Q).rhead[k]=NULL;
for(k=1;k<=(*Q).nu;k++) // 初始化Q的列头指针向量;各列链表为空链表
(*Q).chead[k]=NULL;
// 生成指向列的最后结点的数组
col=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink));
if(!col)
exit(0);
for(k=1;k<=(*Q).nu;k++) // 赋初值
col[k]=NULL;
for(i=1;i<=M.mu;i++) // 按行的顺序相加
{
pm=M.rhead[i]; // pm指向矩阵M的第i行的第1个结点
pn=N.rhead[i]; // pn指向矩阵N的第i行的第1个结点
while(pm&&pn) // pm和pn均不空
{
if(pm->j<pn->j) // 矩阵M当前结点的列小于矩阵N当前结点的列
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pm->j;
p->e=pm->e;
p->right=NULL;
pm=pm->right; // pm指针向右移
}
// 矩阵M当前结点的列大于矩阵N当前结点的列
else if(pm->j>pn->j)
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pn->j;
p->e=-pn->e;
p->right=NULL;
pn=pn->right; // pn指针向右移
}
else if(pm->e-pn->e)
{
// 矩阵M、N当前结点的列相等且两元素之差不为0
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pn->j;
p->e=pm->e-pn->e;
p->right=NULL;
pm=pm->right; // pm指针向右移
pn=pn->right; // pn指针向右移
}
else // 矩阵M、N当前结点的列相等且两元素之差为0
{
pm=pm->right; // pm指针向右移
pn=pn->right; // pn指针向右移
continue;
}
if((*Q).rhead[i]==NULL) // p为该行的第1个结点
// p插在该行的表头且pq指向p(该行的最后一个结点)
(*Q).rhead[i]=pq=p;
else // 插在pq所指结点之后
{
pq->right=p; // 完成行插入
pq=pq->right; // pq指向该行的最后一个结点
}
if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
// p插在该列的表头且col[p->j]指向p
(*Q).chead[p->j]=col[p->j]=p;
else // 插在col[p->]所指结点之后
{
col[p->j]->down=p; // 完成列插入
// col[p->j]指向该列的最后一个结点
col[p->j]=col[p->j]->down;
}
}
while(pm) // 将矩阵M该行的剩余元素插入矩阵Q
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pm->j;
p->e=pm->e;
p->right=NULL;
pm=pm->right; // pm指针向右移
if((*Q).rhead[i]==NULL) // p为该行的第1个结点
// p插在该行的表头且pq指向p(该行的最后一个结点)
(*Q).rhead[i]=pq=p;
else // 插在pq所指结点之后
{
pq->right=p; // 完成行插入
pq=pq->right; // pq指向该行的最后一个结点
}
if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
// p插在该列的表头且col[p->j]指向p
(*Q).chead[p->j]=col[p->j]=p;
else // 插在col[p->j]所指结点之后
{
col[p->j]->down=p; // 完成列插入
// col[p->j]指向该列的最后一个结点
col[p->j]=col[p->j]->down;
}
}
while(pn) // 将矩阵N该行的剩余元素插入矩阵Q
{
p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点
if(!p)
exit(0);
(*Q).tu++; // 非零元素数加1
p->i=i; // 给结点赋值
p->j=pn->j;
p->e=-pn->e;
p->right=NULL;
pn=pn->right; // pm指针向右移
if((*Q).rhead[i]==NULL) // p为该行的第1个结点
// p插在该行的表头且pq指向p(该行的最后一个结点)
(*Q).rhead[i]=pq=p;
else // 插在pq所指结点之后
{
pq->right=p; // 完成行插入
pq=pq->right; // pq指向该行的最后一个结点
}
if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
// p插在该列的表头且col[p->j]指向p
(*Q).chead[p->j]=col[p->j]=p;
else // 插在col[p->j]所指结点之后
{
col[p->j]->down=p; // 完成列插入
// col[p->j]指向该列的最后一个结点
col[p->j]=col[p->j]->down;
}
}
}
for(k=1;k<=(*Q).nu;k++)
if(col[k]) // k列有结点
col[k]->down=NULL; // 令该列最后一个结点的down指针为空
free(col);
return 1;
}
// 求稀疏矩阵乘积Q=M*N
int MultSMatrix(CrossList M,CrossList N,CrossList *Q)
{
int i,j,e;
OLink q,p0,q0,q1,q2;
InitSMatrix(Q);
(*Q).mu=M.mu;
(*Q).nu=N.nu;
(*Q).tu=0;
(*Q).rhead=(OLink*)malloc(((*Q).mu+1)*sizeof(OLink));
if(!(*Q).rhead)
exit(0);
(*Q).chead=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink));
if(!(*Q).chead)
exit(0);
for(i=1;i<=(*Q).mu;i++) // 初始化矩阵Q的行头指针向量;各行链表为空链表
(*Q).rhead[i]=NULL;
for(i=1;i<=(*Q).nu;i++) // 初始化矩阵Q的列头指针向量;各列链表为空链表
(*Q).chead[i]=NULL;
for(i=1;i<=(*Q).mu;i++)
for(j=1;j<=(*Q).nu;j++)
{
p0=M.rhead[i];
q0=N.chead[j];
e=0;
while(p0&&q0)
{
if(q0->i<p0->j)
q0=q0->down; // 列指针后移
else if(q0->i>p0->j)
p0=p0->right; // 行指针后移
else // q0->i==p0->j
{
e+=p0->e*q0->e; // 乘积累加
q0=q0->down; // 行列指针均后移
p0=p0->right;
}
}
if(e) // 值不为0
{
(*Q).tu++; // 非零元素数加1
q=(OLink)malloc(sizeof(OLNode)); // 生成结点
if(!q) // 生成结点失败
exit(0);
q->i=i; // 给结点赋值
q->j=j;
q->e=e;
q->right=NULL;
q->down=NULL;
if(!(*Q).rhead[i]) // 行表空时插在行表头
(*Q).rhead[i]=q1=q;
else // 否则插在行表尾
q1=q1->right=q;
if(!(*Q).chead[j]) // 列表空时插在列表头
(*Q).chead[j]=q;
else // 否则插在列表尾
{
q2=(*Q).chead[j]; // q2指向j行第1个结点
while(q2->down)
q2=q2->down; // q2指向j行最后1个结点
q2->down=q;
}
}
}
return 1;
}
// 求稀疏矩阵M的转置矩阵T
int TransposeSMatrix(CrossList M,CrossList *T)
{
int u,i;
OLink *head,p,q,r;
if((*T).rhead)
DestroySMatrix(T);
CopySMatrix(M,T); // T=M
u=(*T).mu; // 交换(*T).mu和(*T).nu
(*T).mu=(*T).nu;
(*T).nu=u;
head=(*T).rhead; // 交换(*T).rhead和(*T).chead
(*T).rhead=(*T).chead;
(*T).chead=head;
for(u=1;u<=(*T).mu;u++) // 对T的每一行
{
p=(*T).rhead[u]; // p为行表头
while(p) // 没到表尾,对T的每一结点
{
q=p->down; // q指向下一个结点
i=p->i; // 交换.i和.j
p->i=p->j;
p->j=i;
r=p->down; // 交换.down.和right
p->down=p->right;
p->right=r;
p=q; // p指向下一个结点
}
}
return 1;
}
int main()
{
CrossList A,B,C;
InitSMatrix(&A);//CrossList类型使用之前必须初始化
InitSMatrix(&B);
printf("创建矩阵A:\n");
CreateSMatrix(&A);
PrintSMatrix(A);
printf("由矩阵A复制矩阵B: ");
CopySMatrix(A,&B);
PrintSMatrix(B);
DestroySMatrix(&B); // CrossList类型的变量在再次使用之前必须先销毁
printf("销毁矩阵B后:\n");
PrintSMatrix(B);
printf("创建矩阵B2:(与矩阵A的行、列数相同,行、列分别为%d,%d)\n",
A.mu,A.nu);
CreateSMatrix(&B);
PrintSMatrix(B);
}