稀疏矩阵的十字链表实现(C语言实现)

又要从头学数据结构了。

默默挨个实现一遍

实现的功能包括两个矩阵的加减 相乘 还有转置 

有点繁琐 

凑合看吧

#include <stdio.h>
#include <malloc.h>
typedef int ElemType;// 稀疏矩阵的十字链表存储表示 

typedef struct OLNode
{
	int i,j;	//该非零元的列和下标 
	ElemType e;		//非零元素值 
	struct OLNode *right,*down;		//该非零元所在行表和列表的后继链域 
}OLNode,*OLink;

typedef struct
{
	OLink *rhead,*chead;
	int mu,nu,tu;		//稀疏矩阵的行数、列数和非零元个数 
}CrossList;

//初始化M  
int InitSMatrix(CrossList *M)
{
	(*M).rhead=(*M).chead=NULL;
	(*M).mu=(*M).nu=(*M).tu=0;
	return 1;
}
//销毁稀疏矩阵M
int DestroySMatrix(CrossList *M)
{
	int i;
	OLNode *p,*q;
	
	for(i=1;i<=(*M).mu;i++)//按行释放节点 
	{
		p=*((*M).rhead+i);
		while(p)
		{
			q=p;
			p=p->right;
			free(q);
		}
	}
	free((*M).rhead);
	free((*M).chead);
	(*M).rhead=(*M).chead=NULL;
	(*M).mu=(*M).nu=(*M).tu=0;
	return 1;
} 

// 创建稀疏矩阵M,采用十字链表储存表示
int CreateSMatrix(CrossList *M)
{
	int i,j,k,m,n,t;
	ElemType e;
	OLNode *p,*q;
	if((*M).rhead)
		DestroySMatrix(M);
	printf("请输入稀疏矩阵的行数 列数 非零元素个数:(space)");
	scanf("%d %d %d",&m,&n,&t);
	(*M).mu=m;
	(*M).nu=n;
	(*M).tu=t;
	//初始化行链表头
	(*M).rhead=(OLink*)malloc((m+1)*sizeof(OLink));
	if(!(*M).rhead)
		exit(0);
	//初始化列链表头
	(*M).chead= (OLink*)malloc((n+1)*sizeof(OLink));
	if(!(*M).chead)
		exit(0);
	for(k=1;k<=m;k++)//初始化行头指针向量 各行链表为空链表 
		(*M).rhead[k]=NULL;
	for(k=1;k<=n;k++)// 初始化列头指针向量;各列链表为空链表 
		(*M).chead[k]=NULL;
	printf("请按任意次序输入%d个非零元的行 列 元素值:(空格)\n",(*M).tu);
	for(k=0;k<t;k++)
     {
         scanf("%d %d %d",&i,&j,&e);
        p=(OLNode*)malloc(sizeof(OLNode));
        if(!p)
            exit(0);
       p->i=i; // 生成结点 
       p->j=j;
       p->e=e;
       if((*M).rhead[i]==NULL||(*M).rhead[i]->j>j)    
       {
           // p插在该行的第一个结点处
           p->right=(*M).rhead[i];
           (*M).rhead[i]=p;
       }
       else // 寻查在行表中的插入位置 
       {
           //从该行的行链表头开始,直到找到
           for(q=(*M).rhead[i]; q->right && q->right->j < j;q = q->right)
               ;
           p->right=q->right; // 完成行插入 
           q->right=p;
       }
       if((*M).chead[j] == NULL || (*M).chead[j]->i > i) 
       {
           // p插在该列的第一个结点处
           p->down = (*M).chead[j];
           (*M).chead[j] = p;
       }
       else // 寻查在列表中的插入位置 
       {
           for(q = (*M).chead[j];q->down && q->down->i < i;q = q->down)
               ;
           p->down=q->down; // 完成列插入 
           q->down=p;
       }
   }
   return 1;
} 

// 按行或按列输出稀疏矩阵M
int PrintSMatrix(CrossList M)
{
    int i,j;
    OLink p;
    printf("%d行%d列%d个非零元素\n",M.mu,M.nu,M.tu);
    printf("请输入选择(1.按行输出 2.按列输出): ");
    scanf("%d",&i);
    switch(i)
    {
    case 1: 
        for(j=1;j<=M.mu;j++)
        {
            p=M.rhead[j];
            while(p)
            {
                printf("%d行%d列值为%d\n",p->i,p->j,p->e);
                p=p->right;
            }
        }
        break;
    case 2: 
        for(j=1;j<=M.nu;j++)
        {
            p=M.chead[j];
            while(p)
            {
                printf("%d行%d列值为%d\n",p->i,p->j,p->e);
                p=p->down;
            }
        }
    }
    return 1;
}

// 由稀疏矩阵M复制得到T
int CopySMatrix(CrossList M,CrossList *T)
{
    int i;
    OLink p,q,q1,q2;
    
    if((*T).rhead)
        DestroySMatrix(T);
    (*T).mu=M.mu;
    (*T).nu=M.nu;
    (*T).tu=M.tu;
    (*T).rhead=(OLink*)malloc((M.mu+1)*sizeof(OLink));
    if(!(*T).rhead)
        exit(0);
    (*T).chead=(OLink*)malloc((M.nu+1)*sizeof(OLink));
    if(!(*T).chead)
        exit(0);
    for(i=1;i<=M.mu;i++) // 初始化矩阵T的行头指针向量;各行链表为空链表 
        (*T).rhead[i]=NULL;
    for(i=1;i<=M.nu;i++) // 初始化矩阵T的列头指针向量;各列链表为空链表 
        (*T).chead[i]=NULL;
    for(i=1;i<=M.mu;i++) // 按行复制 
    {
        p=M.rhead[i];
        while(p) // 没到行尾 
        {
            q=(OLNode*)malloc(sizeof(OLNode)); // 生成结点 
            if(!q)
                exit(0);
            q->i=p->i; // 给结点赋值 
            q->j=p->j;
            q->e=p->e;
            if(!(*T).rhead[i]) // 插在行表头 
                (*T).rhead[i]=q1=q;
            else // 插在行表尾 
                q1=q1->right=q;
            if(!(*T).chead[q->j]) // 插在列表头 
            {
                (*T).chead[q->j]=q;
                q->down=NULL;
            }
            else // 插在列表尾 
            {
                q2=(*T).chead[q->j];
                while(q2->down)
                    q2=q2->down;
                q2->down=q;
                q->down=NULL;
            }
            p=p->right;
        }
        q->right=NULL;
    }
    return 1;
}
 // 求稀疏矩阵的和Q=M+N
int AddSMatrix(CrossList M,CrossList N,CrossList *Q)
{
    int i,k;
    OLink p,pq,pm,pn;
    OLink *col;
    
    if(M.mu!=N.mu||M.nu!=N.nu)
    {
        printf("两个矩阵不是同类型的,不能相加\n");
        exit(0);
    }
    (*Q).mu=M.mu; // 初始化Q矩阵 
    (*Q).nu=M.nu;
    (*Q).tu=0; // 元素个数的初值 
    (*Q).rhead=(OLink*)malloc(((*Q).mu+1)*sizeof(OLink));
    if(!(*Q).rhead)
        exit(0);
    (*Q).chead=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink));
    if(!(*Q).chead)
        exit(0);
    for(k=1;k<=(*Q).mu;k++) // 初始化Q的行头指针向量;各行链表为空链表 
        (*Q).rhead[k]=NULL;
    for(k=1;k<=(*Q).nu;k++) // 初始化Q的列头指针向量;各列链表为空链表 
        (*Q).chead[k]=NULL;
    // 生成指向列的最后结点的数组 
    col=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink)); 
    if(!col)
        exit(0);
    for(k=1;k<=(*Q).nu;k++) // 赋初值 
        col[k]=NULL;
    for(i=1;i<=M.mu;i++) // 按行的顺序相加 
    {
        pm=M.rhead[i];    // pm指向矩阵M的第i行的第1个结点 
        pn=N.rhead[i];    // pn指向矩阵N的第i行的第1个结点 
        while(pm&&pn)    // pm和pn均不空 
        {
            if(pm->j<pn->j) // 矩阵M当前结点的列小于矩阵N当前结点的列 
            {
                p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
                if(!p)
                    exit(0);
                (*Q).tu++;    // 非零元素数加1 
                p->i=i;        // 给结点赋值 
                p->j=pm->j;
                p->e=pm->e;
                p->right=NULL;
                pm=pm->right; // pm指针向右移 
            }
            else if(pm->j>pn->j)// 矩阵M当前结点的列大于矩阵N当前结点的列 
            {
                p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
                if(!p)
                    exit(0);
                (*Q).tu++;    // 非零元素数加1 
                p->i=i;        // 给结点赋值 
                p->j=pn->j;
                p->e=pn->e;
                p->right=NULL;
                pn=pn->right; // pn指针向右移 
            }
            // 矩阵M、N当前结点的列相等且两元素之和不为0
            else if(pm->e+pn->e) 
            {
                p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
                if(!p)
                    exit(0);
                (*Q).tu++; // 非零元素数加1 
                p->i=i; // 给结点赋值 
                p->j=pn->j;
                p->e=pm->e+pn->e;
                p->right=NULL;
                pm=pm->right; // pm指针向右移 
                pn=pn->right; // pn指针向右移 
            }
            else // 矩阵M、N当前结点的列相等且两元素之和为0 
            {
                pm=pm->right; // pm指针向右移 
                pn=pn->right; // pn指针向右移 
                continue;
            }
            if((*Q).rhead[i]==NULL) // p为该行的第1个结点
                // p插在该行的表头且pq指向p(该行的最后一个结点) 
                (*Q).rhead[i]=pq=p; 
            else // 插在pq所指结点之后 
            {
                pq->right=p; // 完成行插入 
                pq=pq->right; // pq指向该行的最后一个结点 
            }
            if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
                 // p插在该列的表头且col[p->j]指向p  
                (*Q).chead[p->j]=col[p->j]=p;
            else // 插在col[p->]所指结点之后 
            {
                col[p->j]->down=p; // 完成列插入
                 // col[p->j]指向该列的最后一个结点 
                col[p->j]=col[p->j]->down;
            }
        }
        while(pm) // 将矩阵M该行的剩余元素插入矩阵Q 
        {
            p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
            if(!p)
                exit(0);
            (*Q).tu++; // 非零元素数加1 
            p->i=i; // 给结点赋值 
            p->j=pm->j;
            p->e=pm->e;
            p->right=NULL;
            pm=pm->right; // pm指针向右移 
            if((*Q).rhead[i] == NULL) // p为该行的第1个结点 
                // p插在该行的表头且pq指向p(该行的最后一个结点)
                (*Q).rhead[i] = pq = p;  
            else // 插在pq所指结点之后 
            {
                pq->right=p; // 完成行插入 
                pq=pq->right; // pq指向该行的最后一个结点 
            }
            if((*Q).chead[p->j] == NULL) // p为该列的第1个结点
                 // p插在该列的表头且col[p->j]指向p 
                (*Q).chead[p->j] = col[p->j] = p; 
            else // 插在col[p->j]所指结点之后 
            {
                col[p->j]->down=p; // 完成列插入
                // col[p->j]指向该列的最后一个结点 
                col[p->j]=col[p->j]->down;  
            }
        }
        while(pn) // 将矩阵N该行的剩余元素插入矩阵Q 
        {
            p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
            if(!p)
                exit(0);
            (*Q).tu++; // 非零元素数加1 
            p->i=i; // 给结点赋值 
            p->j=pn->j;
            p->e=pn->e;
            p->right=NULL;
            pn=pn->right; // pm指针向右移 
            if((*Q).rhead[i]==NULL) // p为该行的第1个结点 
                // p插在该行的表头且pq指向p(该行的最后一个结点)
                (*Q).rhead[i]=pq=p;  
            else // 插在pq所指结点之后 
            {
                pq->right=p; // 完成行插入 
                pq=pq->right; // pq指向该行的最后一个结点 
            }
            if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
                // p插在该列的表头且col[p->j]指向p  
                (*Q).chead[p->j]=col[p->j]=p; 
            else // 插在col[p->j]所指结点之后 
            {
                col[p->j]->down=p; // 完成列插入
                // col[p->j]指向该列的最后一个结点 
                col[p->j]=col[p->j]->down;  
            }
        }
    }
    for(k=1;k<=(*Q).nu;k++)
        if(col[k]) // k列有结点 
            col[k]->down=NULL; //  令该列最后一个结点的down指针为空 
    free(col);
    return 1;
}

//  求稀疏矩阵的差Q=M-N 
int SubtSMatrix(CrossList M,CrossList N,CrossList *Q)
{
    int i,k;
    OLink p,pq,pm,pn;
    OLink *col;
    
    if(M.mu!=N.mu||M.nu!=N.nu)
    {
        printf("两个矩阵不是同类型的,不能相加\n");
        exit(0);
    }
    (*Q).mu=M.mu; // 初始化Q矩阵 
    (*Q).nu=M.nu;
    (*Q).tu=0; // 元素个数的初值 
    (*Q).rhead=(OLink*)malloc(((*Q).mu+1)*sizeof(OLink));
    if(!(*Q).rhead)
        exit(0);
    (*Q).chead=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink));
    if(!(*Q).chead)
        exit(0);
    for(k=1;k<=(*Q).mu;k++) // 初始化Q的行头指针向量;各行链表为空链表 
        (*Q).rhead[k]=NULL;
    for(k=1;k<=(*Q).nu;k++) // 初始化Q的列头指针向量;各列链表为空链表 
        (*Q).chead[k]=NULL;
    // 生成指向列的最后结点的数组
    col=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink)); 
    if(!col)
        exit(0);
    for(k=1;k<=(*Q).nu;k++) // 赋初值 
        col[k]=NULL;
    for(i=1;i<=M.mu;i++) // 按行的顺序相加 
    {
        pm=M.rhead[i]; // pm指向矩阵M的第i行的第1个结点 
        pn=N.rhead[i]; // pn指向矩阵N的第i行的第1个结点 
        while(pm&&pn) // pm和pn均不空 
        {
            if(pm->j<pn->j) // 矩阵M当前结点的列小于矩阵N当前结点的列 
            {
                p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
                if(!p)
                    exit(0);
                (*Q).tu++; // 非零元素数加1 
                p->i=i; // 给结点赋值 
                p->j=pm->j;
                p->e=pm->e;
                p->right=NULL;
                pm=pm->right; // pm指针向右移 
            }
            // 矩阵M当前结点的列大于矩阵N当前结点的列 
            else if(pm->j>pn->j) 
            {
                p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
                if(!p)
                    exit(0);
                (*Q).tu++; // 非零元素数加1 
                p->i=i; // 给结点赋值 
                p->j=pn->j;
                p->e=-pn->e;
                p->right=NULL;
                pn=pn->right; // pn指针向右移 
            }
            else if(pm->e-pn->e) 
            {
                // 矩阵M、N当前结点的列相等且两元素之差不为0 
                p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
                if(!p)
                    exit(0);
                (*Q).tu++; // 非零元素数加1 
                p->i=i; // 给结点赋值 
                p->j=pn->j;
                p->e=pm->e-pn->e;
                p->right=NULL;
                pm=pm->right; // pm指针向右移 
                pn=pn->right; // pn指针向右移 
            }
            else // 矩阵M、N当前结点的列相等且两元素之差为0 
            {
                pm=pm->right; // pm指针向右移 
                pn=pn->right; // pn指针向右移 
                continue;
            }
            if((*Q).rhead[i]==NULL) // p为该行的第1个结点 
                // p插在该行的表头且pq指向p(该行的最后一个结点)
                (*Q).rhead[i]=pq=p;  
            else // 插在pq所指结点之后 
            {
                pq->right=p; // 完成行插入 
                pq=pq->right; // pq指向该行的最后一个结点 
            }
            if((*Q).chead[p->j]==NULL) // p为该列的第1个结点 
                // p插在该列的表头且col[p->j]指向p
                (*Q).chead[p->j]=col[p->j]=p;  
            else // 插在col[p->]所指结点之后 
            {
                col[p->j]->down=p; // 完成列插入
                // col[p->j]指向该列的最后一个结点 
                col[p->j]=col[p->j]->down;  
            }
        }
        while(pm) // 将矩阵M该行的剩余元素插入矩阵Q 
        {
            p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
            if(!p)
                exit(0);
            (*Q).tu++; // 非零元素数加1 
            p->i=i; // 给结点赋值 
            p->j=pm->j;
            p->e=pm->e;
            p->right=NULL;
            pm=pm->right; // pm指针向右移 
            if((*Q).rhead[i]==NULL) // p为该行的第1个结点 
                // p插在该行的表头且pq指向p(该行的最后一个结点)
                (*Q).rhead[i]=pq=p;  
            else // 插在pq所指结点之后 
            {
                pq->right=p; // 完成行插入 
                pq=pq->right; // pq指向该行的最后一个结点 
            }
            if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
                // p插在该列的表头且col[p->j]指向p  
                (*Q).chead[p->j]=col[p->j]=p; 
            else // 插在col[p->j]所指结点之后 
            {
                col[p->j]->down=p; // 完成列插入
                // col[p->j]指向该列的最后一个结点 
                col[p->j]=col[p->j]->down;  
            }
        }
        while(pn) // 将矩阵N该行的剩余元素插入矩阵Q 
        {
            p=(OLink)malloc(sizeof(OLNode)); // 生成矩阵Q的结点 
            if(!p)
                exit(0);
            (*Q).tu++; // 非零元素数加1 
            p->i=i; // 给结点赋值 
            p->j=pn->j;
            p->e=-pn->e;
            p->right=NULL;
            pn=pn->right; // pm指针向右移 
            if((*Q).rhead[i]==NULL) // p为该行的第1个结点 
                // p插在该行的表头且pq指向p(该行的最后一个结点)
                (*Q).rhead[i]=pq=p;  
            else // 插在pq所指结点之后 
            {
                pq->right=p; // 完成行插入 
                pq=pq->right; // pq指向该行的最后一个结点 
            }
            if((*Q).chead[p->j]==NULL) // p为该列的第1个结点
                // p插在该列的表头且col[p->j]指向p 
                (*Q).chead[p->j]=col[p->j]=p;  
            else // 插在col[p->j]所指结点之后 
            {
                col[p->j]->down=p; // 完成列插入
                // col[p->j]指向该列的最后一个结点  
                col[p->j]=col[p->j]->down; 
            }
        }
    }
       for(k=1;k<=(*Q).nu;k++)
           if(col[k]) // k列有结点 
               col[k]->down=NULL; // 令该列最后一个结点的down指针为空 
       free(col);
       return 1;
}
// 求稀疏矩阵乘积Q=M*N 
int MultSMatrix(CrossList M,CrossList N,CrossList *Q)
{
    int i,j,e;
    OLink q,p0,q0,q1,q2;
    
    InitSMatrix(Q);
    (*Q).mu=M.mu;
    (*Q).nu=N.nu;
    (*Q).tu=0;
    (*Q).rhead=(OLink*)malloc(((*Q).mu+1)*sizeof(OLink));
    if(!(*Q).rhead)
        exit(0);
    (*Q).chead=(OLink*)malloc(((*Q).nu+1)*sizeof(OLink));
    if(!(*Q).chead)
        exit(0);
    for(i=1;i<=(*Q).mu;i++) // 初始化矩阵Q的行头指针向量;各行链表为空链表 
        (*Q).rhead[i]=NULL;
    for(i=1;i<=(*Q).nu;i++) // 初始化矩阵Q的列头指针向量;各列链表为空链表 
        (*Q).chead[i]=NULL;
    for(i=1;i<=(*Q).mu;i++)
        for(j=1;j<=(*Q).nu;j++)
        {
            p0=M.rhead[i];
            q0=N.chead[j];
            e=0;
            while(p0&&q0)
            {
                if(q0->i<p0->j)
                    q0=q0->down; // 列指针后移 
                else if(q0->i>p0->j)
                    p0=p0->right; // 行指针后移 
                else // q0->i==p0->j 
                {
                    e+=p0->e*q0->e; // 乘积累加 
                    q0=q0->down; // 行列指针均后移 
                    p0=p0->right;
                }
            }
            if(e) // 值不为0 
            {
                (*Q).tu++; // 非零元素数加1 
                q=(OLink)malloc(sizeof(OLNode)); // 生成结点 
                if(!q) // 生成结点失败 
                    exit(0);
                q->i=i; // 给结点赋值 
                q->j=j;
                q->e=e;
                q->right=NULL;
                q->down=NULL;
                if(!(*Q).rhead[i]) // 行表空时插在行表头 
                    (*Q).rhead[i]=q1=q;
                else // 否则插在行表尾 
                    q1=q1->right=q;
                if(!(*Q).chead[j]) // 列表空时插在列表头 
                    (*Q).chead[j]=q;
                else // 否则插在列表尾 
                {
                    q2=(*Q).chead[j]; // q2指向j行第1个结点 
                    while(q2->down)
                        q2=q2->down; // q2指向j行最后1个结点 
                    q2->down=q;
                }
            }
        }
        return 1;
}
//  求稀疏矩阵M的转置矩阵T 
int TransposeSMatrix(CrossList M,CrossList *T)
{
    int u,i;
    OLink *head,p,q,r;
    
    if((*T).rhead)
        DestroySMatrix(T);
    CopySMatrix(M,T); // T=M 
    u=(*T).mu; // 交换(*T).mu和(*T).nu 
    (*T).mu=(*T).nu;
    (*T).nu=u;
    head=(*T).rhead; // 交换(*T).rhead和(*T).chead 
    (*T).rhead=(*T).chead;
    (*T).chead=head;
    for(u=1;u<=(*T).mu;u++) // 对T的每一行 
    {
        p=(*T).rhead[u]; // p为行表头 
        while(p) // 没到表尾,对T的每一结点 
        {
            q=p->down; // q指向下一个结点 
            i=p->i; // 交换.i和.j 
            p->i=p->j;
            p->j=i;
            r=p->down; // 交换.down.和right 
            p->down=p->right;
            p->right=r;
            p=q; // p指向下一个结点 
    }
}
return 1;
}


int main()
{
	CrossList A,B,C;
	InitSMatrix(&A);//CrossList类型使用之前必须初始化 
	InitSMatrix(&B);
	printf("创建矩阵A:\n");
	CreateSMatrix(&A); 
	PrintSMatrix(A);
	printf("由矩阵A复制矩阵B: ");
    CopySMatrix(A,&B);
    PrintSMatrix(B);
	DestroySMatrix(&B); // CrossList类型的变量在再次使用之前必须先销毁 
    printf("销毁矩阵B后:\n");
    PrintSMatrix(B);
    printf("创建矩阵B2:(与矩阵A的行、列数相同,行、列分别为%d,%d)\n",
    A.mu,A.nu);
    CreateSMatrix(&B);
    PrintSMatrix(B);
}



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值