【PA2014】【BZOJ3719】Plemiona

Description

远古时代,在吉丽王国的版图上分布着n个部落。建立平面直角坐标系后,每个部落都是一个边平行于坐标轴的矩形。有些地盘可能同时属于多个部落。随着时间推移,部落之间会发生融合。具体来说,若两个部落的公共面积严格大于零,它们会合并成一个新的部落,新部落的形状是包含原来两个部落的最小矩形(边平行于坐标轴)。
数百万年后,部落之间终于达到了稳定状态(任两个部落都不能再合并了),然而吉丽也已经老了。他想知道最终还剩下几个部落,以及各个部落的位置。你能替他完成遗业吗?

Input

第一行一个整数n(1<=n<=100000),表示远古时代的部落数量。
接下来n行,每行四个整数x1,x2,y1,y2(0<=x1< x2<=1000000,0<=y1< y2<=1000000),表示部落的坐标。

Output

第一行输出一个整数m,表示稳定后还剩下的部落数量。
接下来m行,每行四个整数x1,x2,y1,y2,表示部落的坐标。请按照字典序(先比较x1,若x1相等则比较x2,以此类推)从小到大输出。

Sample Input

5

7 8 1 4

1 5 2 3

4 5 2 7

2 3 5 9

4 6 8 9
Sample Output

2

1 6 2 9

7 8 1 4
HINT

Source

鸣谢Jcvb

因为坐标范围很小,所以考虑对x坐标建线段树
线段树每个节点维护两个vector,配合并查集来维护矩形的合并信息
代码又长..跑的又慢…
光荣垫底了..

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define MAXN 100010
#define SIZE 1000010
#define GET (ch>='0'&&ch<='9')
#define lchild rt<<1,l,mid
#define rchild rt<<1|1,mid+1,r
#define ln rt<<1
#define rn rt<<1|1
using namespace std;
const int size=1000000;
int n,ans;
int st[MAXN],sta[MAXN],top;
struct Matrix
{
    int x1,y1,x2,y2;
    inline bool operator <(const Matrix& a)const    {   return x1==a.x1?(x2==a.x2?(y1==a.y1?y2<a.y2:y1<a.y1):x2<a.x2):x1<a.x1;  }
}s[MAXN],Ans[MAXN];
int f[MAXN];
int find(int x) {   return f[x]==x?x:f[x]=find(f[x]);   }
void Union(int a,int b)
{
    int x=find(a),y=find(b);
    if (x==y)   return;
    s[a].x1=min(s[a].x1,s[b].x1);s[a].x2=max(s[a].x2,s[b].x2);
    s[a].y1=min(s[a].y1,s[b].y1);s[a].y2=max(s[a].y2,s[b].y2);
    f[find(b)]=a;
}
inline bool cmp(int a,int b)    {   return s[a].y2==s[b].y2?a<b:s[a].y2<s[b].y2;    }
struct seg  {   vector<int> q1,q2;  }tree[SIZE<<2];
void insert(int rt,int l,int r,int L,int R)
{
    if (l>R||r<L)   return;
    if (l>=L&&r<=R) {   sta[++top]=rt;return;   }
    int mid=(l+r)>>1;insert(lchild,L,R);insert(rchild,L,R);
}
void update(int rt,int x)   {   for (int i=rt;i;i>>=1)  tree[i].q1.push_back(x);    }
int find_rt(int rt,int l,int r,int x)
{
    if (l==r)   return rt;int mid=(l+r)>>1;
    return x<=mid?find_rt(lchild,x):find_rt(rchild,x);
}
inline void in(int &x)
{
    char ch=getchar();x=0;
    while (!GET)    ch=getchar();
    while (GET) x=x*10+ch-'0',ch=getchar();
}
int main()
{
    in(n);
    for (int i=1;i<=n;i++)
        in(s[i].x1),in(s[i].x2),in(s[i].y1),in(s[i].y2),
        s[i].x1++,s[i].y1++,f[i]=st[i]=i;
    sort(st+1,st+n+1,cmp);
    for (int i=1;i<=n;i++)
    {
        bool flag=1;
        while (flag)
        {
            flag=0;top=0;insert(1,1,size,s[st[i]].x1,s[st[i]].x2);
            for (int j=1;j<=top;++j)    for (int k=tree[sta[j]].q1.size()-1;~k;--k)
            {
                int y=tree[sta[j]].q1[k];
                if (y!=f[y]||find(y)==find(st[i]))  {   tree[sta[j]].q1.pop_back();continue;    }
                if (s[y].y2<s[st[i]].y1)    break;
                Union(st[i],y);flag=1;tree[sta[j]].q1.pop_back();
            }
            for (int now=find_rt(1,1,size,s[st[i]].x1);now;now>>=1) for (int k=tree[now].q2.size()-1;~k;--k)
            {
                int y=tree[now].q2[k];
                if (y!=f[y]||find(y)==find(st[i]))  {   tree[now].q2.pop_back();continue;   }
                if (s[y].y2<s[st[i]].y1)    break;
                Union(st[i],y);flag=1;tree[now].q2.pop_back();
            }
            for (int now=find_rt(1,1,size,s[st[i]].x2);now;now>>=1) for (int k=tree[now].q2.size()-1;~k;--k)
            {
                int y=tree[now].q2[k];
                if (y!=f[y]||find(y)==find(st[i]))  {   tree[now].q2.pop_back();break;  }
                if (s[y].y2<s[st[i]].y1)    break;
                Union(st[i],y);flag=1;tree[now].q2.pop_back();
            }
        }
        update(find_rt(1,1,size,s[st[i]].x1),st[i]);
        if (s[st[i]].x1!=s[st[i]].x2)   update(find_rt(1,1,size,s[st[i]].x2),st[i]);
        insert(1,1,size,s[st[i]].x1,s[st[i]].x2);
        for (int j=1;j<=top;++j)    tree[sta[j]].q2.push_back(st[i]);
    }
    for (int i=1;i<=n;++i)  if (f[i]==i)    Ans[++ans]=s[i],Ans[ans].x1--,Ans[ans].y1--;
    printf("%d\n",ans);sort(Ans+1,Ans+ans+1);
    for (int i=1;i<=ans;++i)    printf("%d %d %d %d\n",Ans[i].x1,Ans[i].x2,Ans[i].y1,Ans[i].y2);
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值