中等难度的DP。铺砖问题,有组合数学公式。 但是用搜索+dp的方法更……好吧,也很难做。
研究了一个下午的标程,终于搞懂。把每一层的砖块压缩为二进制编码,搜索上一层到当前层的状态转化是否能够达到。然后从0到11……11Dp。
void dfs ( int n, int from, int to ) 表示当前从左往右有n块砖,from表示前n块砖在这一层的编码,to表示下一层。修改了一下,使得1表示填满,0表示空位。标程里居然是01倒过来写的,我足足发呆了一个钟头。
其他没什么好说的,对于当前和下一层,每次放砖块只有三种可能:两横,竖放,竖放不下。横空就是两个竖放不下……
#include <cstdio>
#include <string>
double b[13][3000];
int tran[20000][2];
int H, W, maxMove, nTran;
void dfs ( int n, int from, int to )
...{
if ( n > W )
return;
if ( n == W )
...{
tran[nTran][0] = from;
tran[nTran ++][1] = to;
return;
}
dfs ( n + 2, ( from << 2 ) + 3, ( to << 2 ) + 3 );
dfs ( n + 1, ( from << 1 ) + 1, to << 1 );
dfs ( n + 1, from << 1, ( to << 1 ) + 1 );
}
void dp ()
...{
memset ( b, 0x00, sizeof ( b ) );
b[0][( 1 << W ) - 1] = 1;
int i, j;
for ( i = 0; i < H; i ++ )
for ( j = 0; j < nTran; j ++ )
b[i + 1][tran[j][1]] += b[i][tran[j][0]];
}
int main ()
...{
freopen ( "in.txt", "r", stdin );
while ( scanf ( "%d %d", &H, &W ) )
...{
if ( !H )
break;
int t;
if ( H < W )
...{
t = H; H = W; W = t;
}
nTran = 0;
dfs ( 0, 0, 0 );
//pt ();
dp ();
//pb ();
printf ( "%.0f ", b[H][( 1 << W ) - 1] );
}
return 0;
}

本文介绍了一种中等难度的动态规划(DP)问题——铺砖问题。文章详细阐述了如何通过二进制编码和搜索+DP的方法解决该问题,并提供了具体的实现代码,包括状态转移和递归搜索过程。
176

被折叠的 条评论
为什么被折叠?



