排序:
默认
按更新时间
按访问量

Sofa framework (2) ----- Main Principles

Scene Graph SOFA中的仿真被描述为具有内在广义层次结构的场景。 场景由节点构成树或有向无环图(DAG)组成。 不同的节点描述不同的仿真对象,也可以在不同的子节点中完成相同对象的不同表示。 场景的结构 场景从一个父节点开始,称为“根”节点。 所有其他节点...

2018-07-30 12:00:06

阅读数:46

评论数:0

Sofa framework (1) ----- Getting Started

Scene Graph SOFA中的仿真被描述为具有内在广义层次结构的场景。 场景由节点构成树或有向无环图(DAG)组成。 不同的节点描述不同的仿真对象,也可以在不同的子节点中完成相同对象的不同表示。 Reference https://www.sofa-framework.or...

2018-07-29 10:20:14

阅读数:67

评论数:0

线性代数笔记

1 矩阵 1.1 矩阵的定义及运算 1.1.1 矩阵的定义 矩阵是一个数表,由 m x n 个数排成的 m 行 n 列的数表 ⎡⎣⎢⎢⎢⎢⎢a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎤⎦⎥⎥⎥⎥⎥[a11a12⋯a1na21a22⋯a...

2018-02-13 19:08:01

阅读数:205

评论数:0

机器人学总结(5)—— ROS

0 平台(Platform) 0.1 操作系统(operating system) 这里我使用的是虚拟机WMware,当然也可以直接安装到硬盘中。我是用的是Ubuntu 16.04,也可以使用别的版本,注意不同版本的操作系统对应不同的ROS版本,这里我安装的是Kinetic。 ...

2018-02-02 15:43:49

阅读数:153

评论数:0

機器人學總結(4) —— 逆運動學

0.前言         逆運動學,是通過操作空間(笛卡爾空間)的位姿,求解關機空間的關節參數的過程。把它放在雅克比後面,是因為有些逆運動學算法需要用到雅克比矩陣。處理逆運動學的方法很多,我們這裡介紹一些常用的方法。 1 可解性         操作臂的逆運動學求解是一個非線性問題。已知位姿...

2016-12-27 20:48:52

阅读数:723

评论数:0

機器人學總結(3) —— 雅克比:速度和靜力

0 前言         前面介紹了機器臂的描述和(正)運動學,這次我們來說微分運動學。運動學是通過關節角度(長度)求解末端笛卡爾位姿的過程。看到微分應該會想到這裡處理的是速度之間的關係,微分運動學是通過關節速度(角速度)求解末端笛卡爾空間的速度和角速度的過程。在求出雅克比矩陣后我們可以確定關節...

2016-12-11 22:11:08

阅读数:776

评论数:0

機器人學總結(2) —— (正)運動學

0 前言         前面我們對機器人的描述做了說明,本節介紹運動學。運動學是通過關節參數求解末端的笛卡爾參數的過程。這裡說的運動學一般也叫正運動學,因為他的逆過程叫逆運動學(通過笛卡爾參數求解關節參數。)         機械臂是由一系列剛體(連桿)通過運動副(關節)鏈接起來的。關節從本...

2016-12-05 10:55:14

阅读数:631

评论数:0

機器人學總結(1) —— 機器人的描述

  0 前言           接觸機器人已經有一定的時間了(其實也不是很長),一直想把這方面的知識和經驗總結一下。主要是想為自己做個整理,如果那裡有錯誤或者有問題的地方,還請大家指正、’指點和交流。         這裡所說的機器人主要指的是串聯的機械臂。我們對機器人的描述主要關注的是...

2016-12-02 22:57:29

阅读数:894

评论数:0

大学总结

0.    序章 毕业时,就准备写一篇关于大学期间的总结。很多人是这样做了。由于当时的思绪有点混乱,所以这个总结就拖延至今。前几日,回了趟学校。故国重游,颇生感触,往事总总,历历在目。于是就决定补上这两年前所拖欠的事情。谨以此作为对大学生活的总结。 1.    换学校与转专业 2008年高考...

2014-11-12 09:33:29

阅读数:2703

评论数:15

二分查找中的死循环

二分算法是我们经常会用到的一个算法。它是分治法的一个应用。不过,虽然他写起来貌似很简单,但是却很容易写错。下面我们讨论一下二分的死循环问题。(这里讨论的是整数的二分问题,浮点数的二分不容易死循环) 1.查找的元素确定,值唯一或者不存在         这种情况等下,我们的流程分为三个分支:(...

2014-09-13 17:35:37

阅读数:2096

评论数:2

卡特兰数(Catalan UVa 991 10303 10007 1478)

一、介绍         卡塔兰数是组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名。         历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡塔兰数”。         卡特兰序列的前11项为:1...

2014-09-12 17:17:58

阅读数:1446

评论数:2

幻方(UVa 10087 - The Tajmahal of ++Y2k)

题目:幻方构造,给你n*n的方形,在里面填上连续的数字,使得每行、每列和对角线上的数字和是m。 分析:数学、构造。幻方的构造方法已经完全被解决,直接利用公式求解即可。             幻方的幻和为:p =(n*n+1)* n / 2             如果 m = k*n + p 则...

2014-05-12 20:35:43

阅读数:1143

评论数:0

AC自动机总结

AC自动机总结 0.引言:       由于大连现场赛的一道 AC自动机+ DP的题目(zoj3545 Rescue the Rabbit)被小媛同学推荐看 AC自动机。经过一段时间的努力,终于把 shǎ崽神牛的 AC自动机专辑题目 AK(其实还差那个高中题。。囧。。不让做)。       特...

2014-03-30 02:18:19

阅读数:21475

评论数:12

斐波纳契数列(Fibonacci Sequence)

斐波纳契数列(Fibonacci Sequence)  0.前言 很久以前就想写一些竞赛学习的总结,但是由于之前事情比较多,导致计划不断的减缓。现在,大学教学任务的考试已经全部结束了,而比赛也告一段落,所以有时间来整理一下之前学过的东西。不久前,在做比赛的时候遇到了这样一个问题:求出第N个斐波...

2012-11-25 14:21:15

阅读数:2277

评论数:0

Modern Robotics Notebook - 7

Chapter 7 Kinematics of Closed Chains Any kinematic chain that contains one or more loops is called a closed chain. These mechanisms are examples of...

2018-10-19 21:01:04

阅读数:11

评论数:0

应用非线性控制(Applied nonlinear control)Notebook - 3

2 相平面分析 相平面分析是研究二阶系统的图形方法,它在19世纪末前已由数学家庞加莱(Henri Poincare)等所确定。基本思想:在二维的状态空间(相平面)画出对应于不同初值的运动轨线没然后研究圭贤的定性特征。 优点:首先,作为图解法,它使我们不必求解非线性方程而得到非线性系统从不同初值出发...

2018-10-19 20:15:19

阅读数:9

评论数:0

UVa 10617 - Again Palindrome

题目 已知一个大写字母构成的字符串S[1, N],求从S中删除某些字母(可以不删)后,能够成回文串的方案数。 分析 动态规划(DP)。 状态定义:f(i, j) 为区间S[i, j]上以S[j]为结束标志(必选S[j])的方案数。 转移方程:f(i, j) = Σ\SigmaΣ f(p, q...

2018-10-19 15:26:29

阅读数:5

评论数:0

应用非线性控制(Applied nonlinear control)Notebook - 2

Part I 非线性系统分析 这一部分主要介绍分析非线性控制系统的各种有效工具。首先,理论分析通常是探讨系统特征最经济的方法。其次,仿真虽然在非线性控制中也很重,但必须要理论指导。非线性系统具有依赖初值和输出的极为丰富的性态。最后,非线性控制器的总是依赖于理论分析技术。 没有适用于所有非线性控...

2018-10-18 20:13:53

阅读数:7

评论数:0

UVa 11752 - The Super Powers

题目 求解64位无符号整数的可以拆解成不同指数的数字。 分析 数论。枚举以2-65535的数字为底数,2-64为指数的所有组合,取合法的存储,排序去重即可。 说明 需要将数字分成两段存储(每个10位),避免溢出。 #include <algorithm&a...

2018-10-16 20:56:15

阅读数:8

评论数:0

应用非线性控制(Applied nonlinear control)Notebook - 1

1 概论 非线性控制的主题:非线性系统的分析与设计。 1.1 为什么 现有控制系统的改进 线性控制方法的关键假设是系统运动是小范围的。机器人可以通过计算力矩控制器完全补偿机器人运动的非线性力,从而在一个很大的工作空间和较大的速度下,实现机器人的高精度控制。 硬非线性特性分析 线性控制的...

2018-10-15 21:05:47

阅读数:3

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭