2011-10-12

本文详细介绍了购物车功能的实现过程,包括页面布局设计、数据库连接与数据读取,以及如何通过代码实现商品信息的展示与交互。

 购物车写了两天了,我却还在皮毛之中,老师讲的东西从逻辑上讲我很明白,可是讲到实际每段代码能实现什么功能、有什么具体含义,我还是知之甚少、、、

所以购物车,制鞋到了这个地步、、、

 protected void Page_Load(object sender, EventArgs e)
    {
        TableRow row = new TableRow();
        TableCell cell = new TableCell();
        cell.Text = "商品名";
        row.Cells.Add(cell);
        cell = new TableCell();
        cell.Text = "价格";
        row.Cells.Add(cell);
        cell = new TableCell();
        cell.Text = "图片";
        row.Cells.Add(cell);
        cell = new TableCell();
        cell.Text = "";
        row.Cells.Add(cell);
        Table1.Rows.Add(row);
        string str = ConfigurationManager.ConnectionStrings["jizhu"].ConnectionString;
        SqlConnection sqlcnn = new SqlConnection(str);
        SqlCommand sqlcmm = new SqlCommand();
        sqlcmm.Connection = sqlcnn;
        sqlcmm.CommandText = "select *from goods";
        sqlcnn.Open();
        SqlDataReader read = sqlcmm.ExecuteReader();
        row = new TableRow();
        TableCell cells = new TableCell();
        object[] value = new object[read.FieldCount];
        while (read.Read())
        {
            row = new TableRow();
            cells = new TableCell();
            read.GetValues(value);
            cells.Text = value[1].ToString();
            row.Cells.Add(cells);
            cells=new TableCell ();
            cells.Text = value[2].ToString();
            row.Cells.Add(cells);
            cells = new TableCell();
            Image img = new Image();
            img.ImageUrl = value[3].ToString();
            img.Height = 100;
            img.Width = 60;
            cells.Controls.Add(img);
            row.Cells.Add(cells);
            cells = new TableCell();
            Button btn = new Button();
            btn.Text = "购买";
            cells.Controls.Add(btn);
            row.Cells.Add(cells);
            Table1.Rows.Add(row);
        }
        read.Close();
        sqlcnn.Close();
    }

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值