自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(395)
  • 收藏
  • 关注

原创 【每天一个知识点】YOLO算法

YOLO是一种高效的目标检测算法,采用"一次检测"思想,将图像划分为网格直接预测目标位置和类别。相比传统两阶段方法,YOLO通过单阶段处理实现快速检测,适合实时应用如自动驾驶、视频监控等。其核心优势在于速度快、结构简单,但存在小目标检测不足的局限。YOLO系列不断演进,最新版本在工程优化和多任务支持方面表现突出,成为计算机视觉领域的重要工具。

2025-12-29 16:42:39 503

原创 【论文阅读】Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation

摘要:本文提出GraphST模型,一种基于对抗式对比学习的时空图表示学习方法,用于解决现有模型对区域图质量敏感的问题。GraphST通过多视角区域图构建、自适应图增强和对抗式对比学习,实现了鲁棒的时空表示学习。模型采用变分图自编码器进行自监督学习,引入跨视角对比机制建模区域关系异质性,并通过困难样本识别增强模型判别力。在多个时空预测任务上的实验验证了其优越性能。该方法为噪声环境下的时空数据分析提供了有效解决方案。

2025-12-26 22:58:02 1109

原创 【每天一个知识点】Kolmogorov–Arnold Networks(KAN)

Kolmogorov-Arnold Networks (KAN) 是一种新型神经网络结构,基于Kolmogorov-Arnold表示定理,通过将传统神经网络中的标量权重替换为可学习的一维函数(如B-Spline),实现高维函数的低维分解表示。相比传统MLP,KAN具有更强的可解释性和结构化建模能力,特别适合科学计算和物理系统建模。但其计算开销较大,高维输入时参数规模仍需优化。KAN不是传统神经网络的替代品,而是作为可解释AI、物理信息神经网络等领域的补充工具,为深度学习提供了新的函数建模思路。尽管仍处于早期

2025-12-26 08:00:00 902

原创 【论文阅读】Structure-guided deep multi-view clustering

本文提出了一种结构引导的深度多视图聚类模型SGMVC,通过多视图邻域构建与高斯建模,有效挖掘数据的局部结构与潜在结构信息。该方法设计了跨视图一致性邻域选择策略,结合邻域引导的对比损失函数捕获视图内部结构;同时引入高斯分布建模嵌入空间结构特征,优化视图间表示差异。实验表明,SGMVC在多个基准数据集上显著优于现有方法,验证了其在挖掘多视图结构信息和提升聚类性能方面的有效性。

2025-12-25 20:00:59 1119

原创 【每天一个知识点】B‑Spline

B-Spline是KAN网络的核心组件,它是一种分段多项式函数,具有局部控制、光滑连接和非负性等特点。通过Cox-de Boor递归公式定义的基函数线性组合,B-Spline能灵活逼近任意连续函数。在KAN中,B-Spline替代了传统MLP的固定激活函数,通过可学习系数实现动态非线性映射,兼具强非线性能力、可解释性和稳定性。这种局部控制特性使网络修改时不影响全局输出,为深度学习提供了更灵活的建模方式。

2025-12-25 16:24:05 330

原创 【论文阅读】Contrastive self-supervised subspace clustering via KAN-based multi-view fusion

本文提出了一种基于Kolmogorov-Arnold Network (KAN)的多视图融合对比自监督子空间聚类方法(CSSCK),旨在解决现有深度多视图子空间聚类方法在处理复杂数据时的三个关键问题:(1)高维数据处理中的维度灾难和对固定编码方式的依赖;(2)缺乏对高置信度聚类信息的监督机制;(3)跨视图信息协同不足。该方法通过KAN层的非线性分解替代传统固定激活函数,构建双阶段自监督融合对比模块,实现了多视图判别性与一致性的动态平衡。实验结果表明,CSSCK在多种数据集上显著优于现有方法。

2025-12-23 08:00:00 977 1

原创 【论文阅读】Semi-supervised deep matrix factorization model for clustering multi-omics data

本文提出SSD-MO模型,一种面向多组学数据的半监督深度非负矩阵分解方法。针对多组学数据高维、稀疏、噪声大的特点,该模型通过深度分解框架融合多视图信息,同时引入半监督机制、流形正则化和多样性约束,有效提升聚类性能。在TCGA六个多组学数据集上的实验表明,SSD-MO相比无监督方法F值提升9%-24%,较半监督方法提升7%-20%,聚类准确率达64%-73%,表现出优越的鲁棒性。该方法为多组学数据集成提供了有效框架,在基因组学研究和精准医学中具有应用潜力。

2025-12-22 07:00:00 840

原创 【论文阅读】Anchor point segmentation based multi-view clustering

本文提出了一种基于锚点分段的多视图聚类方法APS-MVC,通过挖掘锚点与原始数据共享聚类中心的内在几何关系,将数据分组过程建模为马尔可夫链的两步转移机制。该方法首先构建一致性锚点图作为数据对锚点的软划分,然后利用锚点学习聚类中心并确定锚点的软划分,最后通过两步转移完成原始数据分组。实验表明,APS-MVC在六个基准数据集上展现出高效性和有效性,计算复杂度与锚点数量呈平方关系,并能有效处理样本外问题。

2025-12-21 07:00:00 519

原创 【论文阅读】JojoSCL: Shrinkage Contrastive Learning forsingle-cell RNA sequence Clustering

本文提出了一种新颖的用于 scRNA-seq 聚类的自监督对比学习框架——JojoSCL。该方法引入了一种基于层次贝叶斯估计的收缩估计器(shrinkage estimator),通过将基因表达估计值向更加可靠的簇中心进行调整,以降低簇内离散度,并利用 Stein 无偏风险估计(Stein’s Unbiased Risk Estimate,SURE) 进行优化。借助这一机制,JojoSCL 同时提升了实例级和簇级对比学习的效果。

2025-12-20 17:05:06 968

原创 【数据库】spatialLIBD

spatialLIBD是一个整合空间转录组数据分析和可视化的R/Bioconductor工具包,由Lieber脑科学研究所开发。该平台基于10x Genomics Visium技术,提供人类前额叶皮层六层结构的空间转录组数据,包含在线Shiny应用和本地R包两种分析方式,支持交互式探索基因表达的空间分布特征,并附带完整的研究论文和分析代码。

2025-12-19 23:28:25 157

原创 【论文阅读】Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology

本文提出stMMC模型,一种基于对比学习的多模态空间转录组聚类方法。该模型通过并行图自编码器融合基因表达数据与组织学图像特征,并利用对比学习机制优化特征表示。实验表明,stMMC在ARI和NMI指标上优于现有方法,验证了多模态融合的有效性。模型包含三个关键模块:多模态并行图自编码器、对比学习模块和聚类模块,能够有效捕获空间结构和细胞间相互作用。

2025-12-13 20:06:36 565

原创 【每天一个知识点】概念漂移(Concept Drift)。

摘要: "概念漂移"指AI模型因现实世界变化而逐渐失效的现象。例如,用户兴趣从运动鞋转向乐器时,旧推荐系统仍推球鞋,导致预测不准。类似问题也出现在天气预报、金融风控等领域。解决方法包括滑动窗口法、漂移检测器、在线学习等,确保模型持续更新。在数据快速变化的时代,AI系统需具备"持续学习"能力,才能避免与现实脱节。概念漂移提醒我们:人工智能是动态演化的系统,而非一次性工程。(149字)

2025-12-10 10:57:33 274

原创 【论文阅读】Deep time-series clustering via evolutionary learning andgraph-based manifold learning

摘要:本文提出了一种深度进化时间序列聚类方法DETC,解决了传统深度时间序列聚类方法易陷入局部最优、对初始化敏感等问题。DETC通过进化搜索生成多样化候选解,结合基于原始和潜在空间验证指标的适应度函数进行筛选,同时引入图正则化保持数据拓扑结构。在15个多样化数据集上的实验表明,DETC显著优于现有方法,平均排名1.47,NMI指标提升11%。该方法创新性地将进化算法与深度聚类结合,通过流形学习增强表示质量,实现了更稳定准确的聚类效果。

2025-12-05 21:45:36 713

原创 【每天一个知识点】CAG:Context-Augmented Generation

│ RAG (Retrieval) │ → 检索增强↓ 演化│ CAG (Context) │ → 上下文增强↙ ↓ ↘(聚类上下文) (图结构上下文) (记忆上下文)RAG让模型“找到正确的信息”;CAG让模型“在正确的语境中理解与生成”。

2025-11-11 23:20:45 398

原创 【每天一个知识点】自编辑系统(self-editing system)

自编辑系统是AI领域的一种闭环优化机制,通过生成→审查→修正的自动流程提升输出质量。系统由生成模块、审查模块(检测逻辑/格式/事实错误)和修正模块(自动优化)组成,可减少人工干预并保持一致性。优势包括质量提升、标准化和持续改进,但也面临审查精度不足、循环风险、评估困难等挑战。该技术适用于文本生成、代码开发等场景,是AI自主优化的重要研究方向。

2025-11-06 09:24:47 581

原创 【每天一个知识点】元数据过滤(metadata filtering)

元数据过滤是RAG/向量检索中的重要技术,指在语义搜索前通过结构化条件筛选相关文档/分块。元数据包括来源、ID、时间、作者、标签等附加信息,不参与embedding计算但可作过滤条件。其作用包括:提升结果质量(缩小搜索范围)、控制版本/时间维度、优化性能。元数据过滤与分块技术配合形成完整RAG流程:文档分块后附加元数据,检索时先过滤再搜索。该方法能有效减少噪声,确保检索内容的相关性和时效性,同时提高检索效率。

2025-11-05 14:14:39 557

原创 【每天一个知识点】Midjourney

摘要:MidJourney是一款基于扩散模型和CLIP技术的AI图像生成工具,通过"文字语义→噪声图像→多轮去噪→风格修饰"的流程生成高质量图像。用户通过Discord输入文字指令,系统会生成4张候选图供选择,支持放大、变体等操作,并提供版本选择、比例调整等参数控制。其优势在于图像质量高、风格多样,但存在依赖Discord、不可精准编辑等局限。相比Stable Diffusion和DALL·E3,MidJourney更专注于艺术创作与视觉美学领域。

2025-11-04 07:00:00 855 1

原创 【每天一个知识点】AIGC生成高质量图像的方式

摘要:当前AIGC图像生成主要采用扩散模型(如Stable Diffusion、DALL·E3)通过去噪过程实现高质量生成,支持文本到图像等多种任务。GAN模型(如StyleGAN)在特定领域仍具优势,自回归模型(如DALL·E2)则擅长结构化生成。最新趋势是将大语言模型(GPT-4V等)与视觉技术结合,实现多模态智能创作。关键技术包括提示词优化、ControlNet控制、图像修复等,不同模型在质量、可控性和应用场景上各有特点,共同推动AIGC图像生成的创新发展。(149字)

2025-11-03 09:17:22 1039

原创 【每天一个知识点】什么是API?

API(应用程序编程接口)是不同软件系统之间交互的标准化接口,它像"菜单"一样提供预设功能,让程序无需了解内部实现就能获取服务或数据。API的核心价值在于简化开发流程、促进数据共享、实现自动化交互和增强系统扩展性。常见的API应用包括社交媒体接口、支付系统对接和地图服务集成。作为软件世界的"桥梁",API通过标准化方式连接不同程序,极大提升了开发效率和系统协同能力,是现代软件开发不可或缺的基础设施。

2025-11-01 07:00:00 337

原创 【每天一个知识点】数据湖(Data Lake)与数据仓库(Data Warehouse)

数据湖与数据仓库的区别主要体现在数据类型、结构和处理方式上。数据湖可存储各种原始格式数据(结构化/半结构化/非结构化),采用"先存储后处理"模式,成本低且灵活,适合机器学习等场景;数据仓库则只存储结构化数据,需经过ETL处理,存储成本高但查询效率高,适合标准化报表分析。数据湖适用于多样化的实时大数据处理,而数据仓库更适合传统的商业智能分析。两者在数据存储和处理上形成互补。

2025-10-31 11:49:07 379

原创 【论文阅读】Multi-level multi-view network based on structuralcontrastive learning for scRNA-seq data clu

本文提出了一种基于结构一致性对比学习的多层次多视角网络(scMMN)方法用于单细胞RNA测序(scRNA-seq)数据聚类。该方法首先通过k近邻和扩散映射算法构建浅层视角,再利用图拉普拉斯滤波器生成深层视角,形成多层次多视角特征。通过引入组对比学习和结构一致性对比学习策略,增强模型对细胞特征和结构关系的判别能力。在特征融合阶段采用两步融合策略,最终通过k-means算法获得聚类结果。在8个真实scRNA-seq数据集上的实验表明,该方法显著优于现有先进方法,证明了其通过多层次多视角策略捕捉细胞复杂特征的能力

2025-10-30 23:13:04 1692

原创 【每天一个知识点】 异质超图

本文探讨了异质超图在人工智能领域的重要价值。从传统图结构到超图再到异质超图的发展历程,展示了人类对复杂社会关系认知范式的演进。异质超图融合了多类型节点语义与高阶群体连接特征,能够更准确地建模现实世界中的多方互动关系。文章通过社交网络案例分析,说明了异质超图在舆情分析、社区检测等领域的应用优势。最后指出,异质超图神经网络的发展标志着人工智能从"理解关系"向"理解群体"的转变,是实现群体智能的关键技术。这种新型图模型将推动AI在网络分析、推荐系统等领域的突破性进展。

2025-10-30 14:25:04 702

原创 【每天一个知识点】“社区检测”(Community Detection)

“社区检测”(Community Detection)是图学习与社会网络分析中的一个核心概念,指的是在网络(图)结构中自动识别出节点之间关系紧密的群体(社区或簇),使得同一社区内部的节点连接更密集,而不同社区之间的连接相对稀疏。

2025-10-29 19:43:35 814

原创 【论文阅读】CACL: Community-Aware Heterogeneous Graph Contrastive Learning for Social Media Bot Detection

本文提出了一种社区感知的异质图对比学习框架(CACL)用于社交媒体机器人检测。现有方法主要关注图神经网络性能提升,而忽视了社交网络的社区结构特性。CACL框架通过社区感知模块动态挖掘难正负样本,并在拓扑、文本和属性三个层面进行自适应图增强,开展有监督图对比学习。实验表明,该方法在三个基准数据集上优于主流对比方法,有效解决了模型泛化能力不足和过平滑等问题。主要创新包括社区结构感知的动态难样本挖掘机制,以及结合多种增强策略的对比学习框架。

2025-10-29 17:54:01 1133

原创 【每天一个知识点】英文参考文献作者数 ≥ 4:只输出前三个作者,然后第4个位置用 et al.

本文介绍了文献引用作者名的格式化规则。当文献作者数≤3时,列出全部作者(如A.Zhang,B.Li,C.Wang);当作者数≥4时,仅显示前三位作者并添加"etal."(如A.Zhang,B.Li,C.Wang,etal.)。该规则通过修改.bst文件中的format.names函数实现,确保统一格式化输出。函数会累积输出字符串,并在处理到第四位作者时自动替换为"etal."终止循环。

2025-10-28 22:46:34 240

原创 【每天一个知识点】[特殊字符] 非结构化文本:隐藏在文字里的智能宝藏

摘要:非结构化文本(如新闻、评论、聊天记录等)是数字世界中最"人性化"的数据形式。AI通过自然语言处理技术,可将杂乱文本转化为可计算的知识资源,实现情感分析、主题聚类、文本生成等功能。在教育、医疗、司法等领域,AI能挖掘文本中的价值信息。随着生成式AI的发展,非结构化文本不仅可被理解,还能成为知识生成的起点。这标志着数据不再局限于结构化形式,语言正获得新的数字生命。

2025-10-27 20:57:41 558

原创 【每天一个知识点】负二项分布(Negative Binomial Distribution, NB分布)

负二项分布是描述获得第r次成功所需试验次数的概率分布。其概率质量函数为P(X=k)=C(k-1,r-1)p^r(1-p)^(k-r),其中p为单次成功概率。该分布能处理计数数据中的过度离散现象,在生物统计(如RNA测序)、工业质量控制和营销分析等领域有重要应用。当r=1时即为几何分布。与泊松分布相比,负二项分布更适合建模方差较大的计数数据,特别适用于低成功率(p)的稀疏数据场景。

2025-10-26 21:58:49 1016

原创 【每天一个知识点】h5和h5ad文件的区别

.h5与.h5ad文件对比摘要 .h5是通用的HDF5格式文件,支持任意层级数据存储,常用于深度学习模型权重、科学数据等,适配TensorFlow/PyTorch等工具。 .h5ad是专为单细胞数据(scRNA-seq)设计的HDF5子格式,严格遵循AnnData结构,存储基因表达矩阵、细胞/基因元数据、降维结果等,需通过Scanpy/scvi-tools等工具读写。 核心区别: .h5:通用容器,自由存储; .h5ad:单细胞专用标准化容器,需符合AnnData规范。 工具兼容性:.h5跨生态,.h5ad

2025-10-19 00:27:44 971

原创 【每天一个知识点】具身小脑模型

摘要:具身小脑模型是具身AI系统中负责运动控制与优化的子模块,类似生物小脑的功能定位。它接收高层决策指令,结合传感器反馈,专门处理精细动作控制、误差补偿、时序协调等任务。该模型采用分层架构设计,包含运动控制网络、误差补偿模块、自适应学习单元等组件,与"大脑"模块形成"决策-执行"协作关系。其优势在于提升系统稳定性、实现模块化训练调试、增强控制迁移性。当前机器人控制中的底层控制器和神经科学的小脑研究为其提供了理论基础,而大模型与机器人结合的框架(如ELLMER)正体现类

2025-10-17 07:30:00 814

原创 【每天一个知识点】[特殊字符] 具身大脑大模型:让AI长出“身体”的灵魂冒险

AI具身智能:让机器"活起来" 当前AI大模型已具备强大的语言能力,但缺乏与物理世界的交互。具身智能(Embodied Intelligence)旨在为AI赋予"身体",使其能看、听、动、思考,形成感知-决策-行动的闭环。通过融合语言模型、视觉模型和动作控制,AI不仅能理解指令,还能执行任务,如泡茶、搬运等。谷歌PaLM-E、智源RoboBrain等研究已取得进展,但感知融合、动作精准度等仍是挑战。未来,具身AI或将成为能做饭、巡检、助教的"数字生命&quo

2025-10-16 07:30:00 389

原创 【每天一个知识点】sentence-transformers

sentence-transformers是一个用于文本向量化的开源Python库,支持语义搜索、聚类、相似度计算等任务。主要功能包括:安装简单(pip install),提供多语言预训练模型(如all-MiniLM-L6-v2),可快速生成句子嵌入向量并计算相似度。典型应用场景包括语义搜索、文本聚类和RAG检索。支持与HuggingFace集成,提供GPU加速和批量处理优化。该库特别适合中文处理,包含BAAI提供的中文优化模型(bge-base-zh)。

2025-10-15 07:30:00 738

原创 【每天一个知识点】提示词工程

提示词工程是AI时代与机器对话的关键技能,通过精心设计输入指令来优化AI输出质量。核心技巧包括角色设定、任务分解、示例驱动等,可显著提升工作效率和人机协作效果。该技术已广泛应用于教育、科研、企业等领域,未来将形成更科学的体系,并可能纳入教育课程。掌握提示词工程将成为智能社会的重要能力。

2025-10-14 00:01:15 456

原创 【每天一个知识点】DevOps

DevOps是一种将开发与运维结合的新型软件交付模式,通过自动化工具链(如Git、Jenkins、Docker等)实现持续集成与交付。其核心价值在于:提升交付速度(从几天缩短至一天多次)、降低风险(自动化测试)、增强团队协作。典型流程包括代码提交→自动测试→打包部署→实时监控,形成"开发-运维"一体化闭环。相比传统模式,DevOps具有自动化程度高、可追踪性强、支持快速回滚等优势,最终实现更高效、更稳定的软件交付。

2025-10-13 07:30:00 419

原创 【每天一个知识点】[特殊字符] 智能制造技术概述

摘要:智能制造是以数据为核心、AI为驱动的新型制造模式,融合自动化、大数据、物联网等技术,实现生产系统的自感知、自决策和自优化。其核心特征包括智能化、互联化、柔性化等,关键技术涵盖AI、数字孪生、工业互联网等。智能制造在汽车、电子、能源等领域显著提升效率和质量,优势包括提质降本、绿色安全等。发展趋势指向自学习化、产业智能化和云边协同等,最终实现"机器能思考、工厂能学习"的智能进化。

2025-10-12 07:30:00 931

原创 【每天一个知识点】[特殊字符] 3D打印技术概述

3D打印是一种通过逐层堆叠材料制造三维实体的增材制造技术,区别于传统减材工艺。其基本流程包括建模、切片、打印和后处理。主要技术类型有FDM、SLA、SLS等,应用涵盖工业、医疗、建筑等领域。虽然具有设计自由度高、可定制等优势,但也存在速度慢、成本高等局限。未来将与AI、生物技术等融合,向多材料、4D打印等方向发展,推动制造方式的革新。

2025-10-11 14:37:29 721

原创 【每天一个知识点】[特殊字符] 大数据的定义及单位

大数据是指海量、多样、快速变化且价值密度低的数据集合,具有体量大(TB-PB级)、速度快(实时处理)、类型多样(文本/音视频等)等特征。其常用单位从字节(B)到泽字节(ZB)呈指数级增长,例如1万个传感器每天可产生86GB数据。大数据通过AI等技术转化为智能应用,在工业预测、金融风控等领域发挥价值,成为数字经济时代的核心生产要素。掌握数据思维将是未来的关键能力。

2025-10-10 23:33:13 607

原创 【数据集】WebQuestions

WebQuestions是由斯坦福NLP小组发布的经典知识库问答数据集,包含5,810个基于Freebase的自然语言问答对。该数据集因其实用性和适中的规模成为KBQA领域的基准测试集,特别适合评估一跳/两跳关系路径的推理能力。其增强版WebQuestionsSP额外提供了4,737个问题的SPARQL标注,支持语义解析模型的训练与评估。尽管存在推理深度有限、知识库覆盖不全等局限,该数据集仍在KBQA研究中发挥着重要作用,常被用于模型对比、迁移学习和错误分析。相关资源可通过Stanford NLP Grou

2025-10-08 23:46:26 1104

原创 【每天一个知识点】超图和异构图的不同

超图和异构图是两种不同的图模型。超图通过超边连接多个顶点,用于建模高阶群组关系(如用户-商品群组);异构图则包含不同类型的节点和边,强调异质语义关系(如作者-论文-会议网络)。超图擅长处理复杂局部结构,异构图适合多语义网络。典型应用场景分别为:超图用于推荐系统、生物通路分析,异构图用于知识图谱、学术网络等。二者的核心区别在于:超图突破边连接顶点数量的限制,异构图突破节点和边类型的单一性。

2025-09-29 23:08:31 312

原创 【论文阅读】Joint consensus kernel learning and adaptive hypergraph regularization for graph-based cluster

本文提出了一种新颖的联合一致性核学习与自适应超图正则化方法(JKHR),用于提升图聚类性能。该方法创新性地将自适应超图拉普拉斯正则项引入多核学习框架,通过融合多个近邻核图构建超图,有效捕捉数据的高阶几何关系。JKHR实现了对一致性核矩阵和超图正则项的联合优化,使两者相互引导增强。实验结果表明,该方法在合成和真实数据集上均优于现有自表达图聚类和传统聚类技术,展现出更强的几何结构保持能力和聚类性能。

2025-09-29 23:02:16 1121

原创 【每天一个知识点】零样本生成(Zero-shot Generation)

零样本生成是生成式AI无需专门训练即可完成新任务的能力,仅依靠预训练知识和用户提示就能输出结果。其优势在于降低数据依赖、提高通用性,但也面临质量不稳定、提示敏感等挑战。相比小样本和有监督学习,零样本更强调泛化能力。应用场景广泛,如客服、创作、教育等领域,推动AI从专用工具向通用助手发展。

2025-09-28 00:38:44 371

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除