关闭

CSU 1978: LXX的图论题

标签: 最短路径算法弗洛伊德算法判负环
46人阅读 评论(2) 收藏 举报
分类:

CSU 1978: LXX的图论题 判负环

Description

由于lxx的图论和数据结构太弱了,大佬Z决定为lxx补一补。于是大佬Z为lxx出了一道题目,题目如下:给出一张有向图,图中有n个点,m条边,每条边上都有一个权值w,问图中是否存在满足以下条件的点i,j,…p使得不等式w[i][j] * w[j][k] * …. * w[p][i]<1成立。奈何lxx太弱了,他决定寻求你的帮助。

Input

多组输入,以文件结尾。第一行两个整数n( 1<=n<=500 ),m( 1<=m<=n*(n-1)/2 ),接下来m行,每行3个数x,y,z,(x≠y):表示x到y有一条边,权值为z(0<z<20,且保证z小数点后面最多只有一位)。

Output

如果存在满足题目所描述的式子,输出“YES”,否则输出“NO”。

Sample Input

2 2
1 2 0.9
2 1 1.2
6 4
1 2 0.1
2 4 0.8
4 1 12
4 1 15

Sample Output

NO
YES

Hint

点的编号为1~n

Source

2017年8月月赛

Author

廖璇璇

题目大意:

问是否能在图中找到一个环,满足环上所有边权的乘积小于1。

思路1: 将权值转化为对数 spfa判断是否存在负环

思路2: floyd变形

#include <iostream>
#include <cstdio>
using namespace std;
double e[505][505];
const double inf = 99999;
int n,m;
int main()
{
    while(scanf("%d%d",&n,&m) != EOF)
    {
        int u,v;double w;
        for(int i = 1 ; i <= n ; i++)
            for(int j = 1 ; j <= n ; j++)
                e[i][j] = inf;
        for(int i = 0 ; i < m ; i++)
        {
            scanf("%d%d%lf",&u,&v,&w);
            e[u][v] = min(e[u][v],w);   
        }
        for(int k = 1 ; k <= n ; k++)
            for(int i = 1 ; i <= n ; i++)
                for(int j = 1 ; j <= n ; j++)
                    e[i][j] = min(e[i][j],e[i][k]*e[k][j]);
        bool flag = false;
        for(int i = 1 ; i <= n ; i++)
            if(e[i][i] < 1)
            {
                flag = true;
                break;
            }
        printf("%s\n",flag ? "YES" : "NO");
    }   
    return 0;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:381659次
    • 积分:992
    • 等级:
    • 排名:千里之外
    • 原创:18篇
    • 转载:0篇
    • 译文:0篇
    • 评论:5条
    文章存档
    最新评论