c笔记——数据

数据类型关键字

c 数据类型关键字
K& R关键字C90关键字C99关键字
intsigned_Bool
longvoid_Complex
short _Imaginary
unsigned  
char  
float  
double  


整数与浮点数


整数就是没有小数部分的数。


浮点数和数学的实数相对应。

浮点数表示法将一个数分为小数部分和指数部分,并分别存储。



整数和浮点数在应用上的区别:

1.整数没有小数部分,浮点数有小数部分。
2.浮点数可以表示比整数范围大得多的数。
3. 浮点数往往只是实际值的近似值。
4.浮点数运算通常比整数慢。

数据类型

int

short  int  简写 short

long int 简写 long

long long int 简写 long long

unsigned int  简写 unsigned

unsigned long int 简写 unsigned long

unsigned short int 简写 unsigned short

unsigned long long int 简写 unsigned long long 

signed 有符号,默认是有符号的。

int 类型为16位或者32位,依据自然字的大小而定。int 类型被认为是计算机运算处理起来最方便有效的整数类型。


取值范围在limits.h头文件中定义了。

对于int 范围

1、关于INT取值范围首先是一个标准问题,就拿C来说,INT的取值范围主要由ANSI C规定。这一点是不容置疑的。目前ANSI C规定INT最小不小于16位。

2、关于位宽问题有点像现在面向对像编程里面的继承一样。电脑硬件位宽就是父构件,操作系统OS就是其子构件,编译器又是OS的子构件。子构件可以继承父构件的位宽,但是跟派生不一样,子构件无法超出父构件的位宽。即子构件真包含于父构件。

于是乎得出如此结论:

INT的取值范围取决于编译器。但前提是不超过OS及电脑位宽。

编译器因为其制作的历史条件及环境因素,位宽肯定不会超过当时的操作系统和电脑硬件,但不一定会等于当时的OS及电脑。像TC就是一个很好的例子。当有一个位宽更大的操作系统运行以前的老编译器时(能运行的话),那么所得结果还是以老编译器为准。因此,如果说INT取值范围由操作系统或由电脑决定,虽不能说这种说法错误,但仍然有些不妥。


long 类型可以加l 或者L后缀,long long 类型可以加LL或者 ll  ,U或u标识无符号。

打印整型数

printf()的格式说明符 。
%x 十六进制打印 
%o 八制打印
%u 无符号打印
%ld 打印long类型,也可以 %lx,%lo
%hd 对short类型以十进制打印
%lu 打印unsigned long 类型
%llu %lld 可以打印 long long 类型。


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值