最近公共祖先(LCA)问题常见于各种面试题中,针对不同情况算法也不尽相同。
情况1:二叉树是个二叉查找树,且root和两个节点的值(a, b)已知。
如果该二叉树是二叉查找树,那么求解LCA十分简单。
基本思想为:从树根开始,该节点的值为t,如果t大于t1和t2,说明t1和t2都位于t的左侧,所以它们的共同祖先必定在t的左子树中,从t.left开始搜索;如果t小于t1和t2,说明t1和t2都位于t的右侧,那么从t.right开始搜索;如果t1<=t<= t2,说明t1和t2位于t的两侧(或t=t1,或t=t2),那么该节点t为公共祖先。
bstNode* LCA(bstNode* pNode, int value1, int value2)   
{   
    bstNode* pTemp = pNode;   
    while (pTemp)   
    {   
        if (pTemp->data>value1 && pTemp->data>value2)   
            pTemp = pTemp->pLeft;   
        else if(pTemp->data<value1 && pTemp->data<value2)   
            pTemp = pTemp->pRight;   
        else  
            return pTemp;   
    }   
    return NULL;   
}  
 
情况2:普通二叉树,root未知,但是每个节点都有parent指针。
基本思想:分别从给定的两个节点出发上溯到根节点,形成两条相交的链表,问题转化为求这两个相交链表的第一个交点,即传统方法:求出linkedList A的长度lengthA, linkedList B的长度LengthB。然后让长的那个链表走过abs(lengthA-lengthB)步之后,齐头并进,就能解决了。
int getLength (bstNode* pNode)   
{      
    int length = 0;   
    bstNode* pTemp = pNode;   
    while (pTemp)   
    {   
        length ++ ;   
        pTemp = pTemp->pParent;   
    }   
    return length;   
}   
bstNode* LCAC(bstNode* pNode1, bstNode* pNode2)   
{   
    int length1 = getLength(pNode1);   
    int length2 = getLength(pNode2);   
       
    // skip the abs(length1-length2)   
    bstNode* pIter1 = NULL;   
    bstNode* pIter2 = NULL;   
    int k=0;   
    if (length1>=length2)   
    {   
        bstNode* pTemp = pNode1;   
        while (k++<length1-length2)   
        {   
            pTemp = pTemp->pParent;    
        }   
        pIter1 = pTemp;   
        pIter2 = pNode2;   
    }   
    else  
    {   
        bstNode* pTemp = pNode1;   
        while (k++<length2-length1)   
        {   
            pTemp = pTemp->pParent;    
        }   
        pIter1 = pNode1;   
        pIter2 = pTemp;   
    }   
       
    while (pIter1&&pIter2 && pIter1!= pIter2)   
    {   
        pIter1 = pIter1->pParent;   
        pIter2 = pIter2->pParent;   
    }   
    return pIter1;   
}  
 
情况3:也是最普通的情况,二叉树是普通的二叉树,节点只有left/right,没有parent指针。
10
                                          /       /
                                         6         14
                                       /  /       /   /
                                    4   8   12   16
/ /
3 5
基本思想:记录从根找到node1和node2的路径,然后再把它们的路径用类似的情况一来做分析,比如还是node1=3,node2=8这个case.我们肯定可以从根节点开始找到3这个节点,同时记录下路径3,4,6,10,类似的我们也可以找到8,6,10。我们把这样的信息存储到两个vector里面,把长的vector开始的多余节点3扔掉,从相同剩余长度开始比较,4!=8, 6==6,我们找到了我们的答案。
#include <vector>   
bool nodePath (bstNode* pRoot, int value, std::vector<bstNode*>& path)   
{   
    if (pRoot==NULL) return false;   
    if (pRoot->data!=value)   
    {   
        if (nodePath(pRoot->pLeft,value,path))   
        {   
            path.push_back(pRoot);   
            return true;   
        }   
        else  
        {   
            if (nodePath(pRoot->pRight,value,path))   
            {   
                path.push_back(pRoot);   
                return true;   
            }   
            else  
                return false;   
        }   
    }   
    else  
    {   
        path.push_back(pRoot);   
        return true;   
    }   
}   
bstNode* LCAC(bstNode* pNode, int value1, int value2)   
{   
    std::vector<bstNode*> path1;   
    std::vector<bstNode*> path2;   
    bool find = false;   
    find |= nodePath(pNode, value1, path1);   
    find &= nodePath(pNode, value2, path2);   
    bstNode* pReturn=NULL;   
    if (find)   
    {   
        int minSize = path1.size()>path2.size()?path2.size():path1.size();   
        int it1 = path1.size()-minSize;   
        int it2 = path2.size()-minSize;   
        for (;it1<path1.size(),it2<path2.size();it1++,it2++)   
        {   
            if (path1[it1]==path2[it2])   
            {   
                pReturn = path1[it1];   
                break;   
            }   
        }   
    }   
    return pReturn;   
}  
 
下面说一下本文的题目,也就是POJ1330,用网上流行的LCA算法Tarjan求解(并查集+深搜)。
#include <vector>
#include <iostream>
using namespace std;
const int MAX=17;
int f[MAX];//每个节点所属集合
int r[MAX];//r是rank(秩)合并
int indegree[MAX];//保存每个节点的入度
int visit[MAX];//只有0和1,表示节点是否已处理完毕
vector<int> tree[MAX], Qes[MAX];//数,待查询的节点组合
int ancestor[MAX];//祖先集合
void init(int n)//初始化
{
	for(int i=1; i<=n; i++)
	{
		r[i]=1;//初始秩为1
		f[i]=i;//每个节点的父节点初始为自身
		indegree[i]=0;
		visit[i]=0;
		ancestor[i]=0;
		tree[i].clear();
		Qes[i].clear();
	}
}
int find(int n)//查找n所在集合,并压缩路径
{
	if(f[n]==n)
		return n;
	else
		f[n]=find(f[n]);
	return f[n];
}
int Union(int x, int y)//合并函数,若属于同一分支则返回0,成功合并返回1
{
	int a=find(x);
	int b=find(y);
	if(a==b)
		return 0;
	else if(r[a]<r[b])
	{
		f[a]=b;
		r[b]+=r[a];
	}
	else
	{
		f[b]=a;
		r[a]+=r[b];
	}
	return 1;
}
void LCA(int u)//tarjan求最近公共祖先
{
	ancestor[u]=u;
	int size=tree[u].size();
	//一个一个子节点处理
	for(int i=0; i<size; i++)
	{
		LCA(tree[u][i]);
		Union(u, tree[u][i]);
		ancestor[find(u)]=u;
	}
	//处理完子节点,置visit[u]=1
	visit[u]=1;
	//求当前节点与有关的节点的最近公共祖先
	size=Qes[u].size();
	for(i=0; i<size; i++)
	{
		if(visit[Qes[u][i]]==1)//如果这个节点已处理过
		{
			cout<<ancestor[find(Qes[u][i])]<<endl;
			continue;
		}
	}
}
int main()
{
	int n=16;//树的总节点
	init(n);
	int s, t;
	//构造树
	tree[8].push_back(5); indegree[5]++;
	tree[8].push_back(4); indegree[4]++;
	tree[8].push_back(1); indegree[1]++;
	tree[5].push_back(9); indegree[9]++;
	tree[4].push_back(6); indegree[6]++;
	tree[4].push_back(10); indegree[10]++;
	tree[1].push_back(14); indegree[14]++;
	tree[1].push_back(13); indegree[13]++;
	tree[6].push_back(15); indegree[15]++;
	tree[6].push_back(7); indegree[7]++;
	tree[10].push_back(11); indegree[11]++;
	tree[10].push_back(16); indegree[16]++;
	tree[10].push_back(2); indegree[2]++;
	tree[16].push_back(3); indegree[3]++;
	tree[16].push_back(12); indegree[12]++;
	//输入要查询最近公共祖先的两个节点
	cin>>s>>t;
	//如果s在t左边,那么在遍历完s时还不能求得LCA,所以这里相当于访问两次,在访问t时即可求得结果
	Qes[s].push_back(t);
	Qes[t].push_back(s);
	for(int i=1; i<=n; i++)
	{
		//寻找根节点
		if(indegree[i]==0)//根节点的入度为0
		{
			LCA(i);
			break;
		}
	}
	return 0;
} 
 
 

感谢以下参考:
http://poj.org/problem?id=1330
http://apps.hi.baidu.com/share/detail/16279376
                  
                  
                  
                  
                            
本文详细介绍了解决最近公共祖先(LCA)问题的不同算法,包括针对二叉查找树、普通二叉树等多种情况的方法,并深入讲解了Tarjan算法的原理与实现。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					2901
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            