【打CF,学算法——三星级】CF Gym 100548K Last Denfence

【CF简介】

提交链接:Last Denfence


题面:

 Last Defence
Description
    Given two integers A and B. Sequence S is defined as follow:
    • S0 = A
    • S1 = B
    • Si = |Si−1 − Si−2| for i ≥ 2
    Count the number of distinct numbers in S.
Input
    The first line of the input gives the number of test cases, T. T test cases follow. T is about
    100000.
    Each test case consists of one line - two space-separated integers A, B. (0 ≤ A, B ≤ 1018).
Output
    For each test case, output one line containing “Case #x: y”, where x is the test case
    number (starting from 1) and y is the number of distinct number

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是用TensorFlow搭建A2C算法并实现gym中的打砖块游戏的步骤: 1. 导入库 ```python import numpy as np import tensorflow as tf import gym ``` 2. 定义Actor-Critic网络模型 ```python class ActorCritic(tf.keras.Model): def __init__(self, num_actions): super(ActorCritic, self).__init__() self.common = tf.keras.layers.Dense(32, activation='relu') self.actor = tf.keras.layers.Dense(num_actions, activation='softmax') self.critic = tf.keras.layers.Dense(1) def call(self, inputs): x = self.common(inputs) return self.actor(x), self.critic(x) ``` 该网络模型包含一个共享层和两个分支层,分别用于输出动作概率和状态值。共享层接收环境状态作为输入,经过计算后输出一个向量,分别供两个分支层使用。动作概率分支层使用softmax激活函数输出一个概率分布,以决定在给定状态下采取哪个动作。状态值分支层使用线性激活函数输出一个标量,以估计在给定状态下采取动作的期望回报。 3. 定义A2C算法 ```python class A2C: def __init__(self, env, gamma=0.99, alpha=0.0001): self.env = env self.gamma = gamma self.alpha = alpha self.model = ActorCritic(env.action_space.n) self.optimizer = tf.keras.optimizers.Adam(learning_rate=alpha) def update(self, state, action, reward, next_state, done): state = np.reshape(state, [1, -1]) next_state = np.reshape(next_state, [1, -1]) with tf.GradientTape() as tape: # 计算当前状态的动作概率和状态值 actor_probs, critic_value = self.model(state) # 计算选择的动作的log概率 log_prob = tf.math.log(actor_probs[0, action]) # 计算TD误差 if done: td_error = reward - critic_value else: next_actor_probs, next_critic_value = self.model(next_state) td_error = reward + self.gamma * next_critic_value - critic_value # 计算Actor和Critic的损失函数 actor_loss = -log_prob * td_error critic_loss = tf.keras.losses.mean_squared_error(reward + self.gamma * next_critic_value, critic_value) loss = actor_loss + critic_loss # 计算梯度并更新网络参数 gradients = tape.gradient(loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) ``` 该A2C算法包含一个Actor-Critic网络模型和一个优化器。它的update方法接收当前状态、选择的动作、即时奖励、下一个状态和done标志作为输入,然后根据A2C算法计算Actor和Critic的损失函数,并使用梯度下降法更新网络参数。 4. 训练A2C算法 ```python env = gym.make('Breakout-v0') a2c = A2C(env) total_episodes = 1000 max_steps_per_episode = 10000 for episode in range(total_episodes): state = env.reset() episode_reward = 0 for step in range(max_steps_per_episode): # 选择动作 actor_probs, _ = a2c.model(np.reshape(state, [1, -1])) action = np.random.choice(env.action_space.n, p=actor_probs.numpy()[0]) # 执行动作并观察环境 next_state, reward, done, _ = env.step(action) episode_reward += reward # 更新A2C算法 a2c.update(state, action, reward, next_state, done) if done: break state = next_state print("Episode {}: Reward = {}".format(episode + 1, episode_reward)) ``` 在这个训练循环中,我们首先使用env.reset()初始化游戏状态,并在每个时间步中选择一个动作并执行它。然后,我们观察环境并计算即时奖励,更新A2C算法,直到游戏结束。在每个episode结束时,我们输出总奖励。 5. 运行游戏 ```python from gym.wrappers import Monitor env = gym.make('Breakout-v0') env = Monitor(env, './video', force=True) state = env.reset() done = False while not done: actor_probs, _ = a2c.model(np.reshape(state, [1, -1])) action = np.argmax(actor_probs.numpy()) next_state, _, done, _ = env.step(action) state = next_state env.close() ``` 最后,我们可以使用gym.wrappers.Monitor包装器来录制游戏视频,并在每个时间步中选择Actor-Critic网络模型输出的最大概率动作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值