Hive与数据库的异同

转载 2015年07月07日 11:33:44

一、Hive简介

    Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

    Hvie是建立在Hadoop上的数据仓库基础架构。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL查询语句,称为HQL,它允许熟悉SQL的用户查询数据。同时,这个语言也允许熟悉MapReduce开发者的开发自定义的mapper和reducer来处理内建的mapper和reducer无法完成的复杂的分析工作。

    由于Hive采用了SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构上来看,Hive和数据库除了拥有类似的查询语言,再无类似之处。本文将从多个方面来阐述Hive和数据库的差异。数据库可以用在Online的应用中,但是Hive是为数据仓库而设计的,清楚这一点,有助于从应用角度理解Hive的特性。

查询语言 HQL SQL
数据存储位置 HDFS Raw Device或者Local FS
数据格式 用户定义 系统决定
数据更新 不支持 支持
索引
执行 Mapreduce Executor
执行延迟
可扩展性
数据规模

   

    •查询语言:由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。

    •数据存储位置:Hive是建立在Hadoop之上的,所有Hive的数据都是存储在HDFS中的。而数据库则可以将数据保存在块设备或者本地文件系统中。

    •数据格式:Hive中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、"\t"、"\x001")、行分隔符("\n")以及读取文件数据的方法(Hive中默认有三个文件格式TextFile、SequenceFile以及RCFile)。由于在加载数据的过程中,不需要从用户数据格式到Hive定义的数据格式的转换,因此,Hive在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的HDFS目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。

    •数据更新:由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用INSERT INTO...VALUES添加数据,使用UPDATE...SET修改数据。

    •索引:之前已经说过,Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于MapReduce的引入,Hive可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive仍然可以体现出优势。数据库中,通常会针对一个或几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了Hive不适合在线数据查询。

    •执行:Hive中大多数查询的执行是通过Hadoop提供的MapReduce来实现的(类似select * from tbl的查询不需要MapReduce)。而数据库通常有自己的执行引擎。

    •执行延迟:之前提到,Hive在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致Hive执行延迟高的因素是MapReduce框架。由于MapReduce本身具有较高的延迟,因此在利用MapReduce执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。

    •可扩展性:由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的。而数据库由于ACID语义的严格限制,扩展性非常有限。目前最先进的并行数据库Oracle在理论上的扩展能力也只有100台左右。

    •数据规模:由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。

Hive与数据库的异同

摘要:由于Hive采用了SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实 从结构上来看,Hive和数据库除了拥有类似的查询语言,再无类似之处。本文将从多个方面来阐述Hive和数据库的差异...
  • lichangzai
  • lichangzai
  • 2014年02月17日 15:21
  • 890

Hive与传统数据库的区别

Hive在很多方面和传统数据库类似(例如支持SQL接口),但是其底层对HDFS金额MapReduce的依赖意味着它的体系结构有 别于传统数据库,而这些区别又影响着Hive所支持的特性,进而影响着Hiv...
  • YQlakers
  • YQlakers
  • 2017年05月16日 18:38
  • 914

Hive与传统数据库比较

1. 读时模式  vs 写时模式 传统数据库是在数据写入数据库的时候对照模式进行检查,因此,这以设计模式被称为“写时模式” (schema on write) 而Hive是在读出数据,也就是查询的时候...
  • star782528086
  • star782528086
  • 2015年11月06日 21:10
  • 674

Hive数据仓库与数据库的异同

由于Hive采用了SQL的查询语言HQL,因此很容易将hive理解为数据库。其实从结构上来看,Hive和数据库除了拥有类似的查询语言,再无类似之处。本文将从多个方面来阐述Hive和数据库的差异。数据库...
  • gdkyxy2013
  • gdkyxy2013
  • 2017年09月01日 09:19
  • 116

Hbase和传统数据库的区别

在说HBase之前,我想再唠叨几句。做互联网应用的哥们儿应该都清楚,互联网应用这东西,你没办法预测你的系统什么时候会被多少人访问,你面临的用户到底有多少,说不定今天你的用户还少,明天系统用户就变多了,...
  • u013939918
  • u013939918
  • 2017年03月03日 20:57
  • 366

Hbase与传统数据库的区别

            在说HBase之前,我想再唠叨几句。做互联网应用的哥们儿应该都清楚,互联网应用这东西,你没办法预测你的系统什么时候会被多少人访问,你面临的用户到底有多少,说不定今天...
  • tj15084943501
  • tj15084943501
  • 2015年10月28日 15:24
  • 399

Pig与Hive的区别

http://myeyeofjava.iteye.com/blog/1601792 Pig是一种编程语言,它简化了Hadoop常见的工作任务。Pig可加载数据、表达转换数据以及存储最终结果。Pi...
  • bluejoe2000
  • bluejoe2000
  • 2014年11月25日 08:53
  • 1267

有Mysql数据库的情况下为什么要用Hive数据库?

有Mysql数据库的情况下为什么要用Hive数据库?最近接到公司的一个需求,要求使用Hive数据库做数据查询。当时第一反应就是What?Hive是什么鬼?一脸懵逼状。(请原谅一个刚开始实习的Java实...
  • nxw_tsp
  • nxw_tsp
  • 2017年01月10日 16:07
  • 3264

SparkSQL与Hive on Spark的区别与联系

简要介绍了SparkSQL与Hive on Spark的区别与联系 一、关于Spark 简介 在Hadoop的整个生态系统中,Spark和MapReduce在同一个层级,即主要解决分布式...
  • wtq1993
  • wtq1993
  • 2016年09月05日 16:37
  • 2063

Hive与RDMS的异同

Below are the key features of Hive that differ from RDBMS. Hive resembles a traditional database by...
  • q977734161
  • q977734161
  • 2016年12月15日 13:50
  • 194
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hive与数据库的异同
举报原因:
原因补充:

(最多只允许输入30个字)