排序:
默认
按更新时间
按访问量

python2与python3代码互相转化时注意事项

print不同: python2可以没括号 python3必须有括号 浅拷贝copy用法不同 python3的用法是a=b.copy() python2的用法是a=copy.copy(b) 浮点计算不同 python2中2/3=0(想要小数的话,需要把分子和分母用float进行转化) python...

2018-10-12 21:40:11

阅读数:23

评论数:0

《统计学习方法》P74勘误

gR(D,A)=g(D,A)H(D)g_R(D,A)=\frac{g(D,A)}{H(D)}gR​(D,A)=H(D)g(D,A)​ 改为 gR(D,A)=g(D,A)H(A)g_R(D,A)=\frac{g(D,A)}{H(A)}gR​(D,A)=H(A)g(D,A)​

2018-10-22 23:20:26

阅读数:1

评论数:0

C4.5最新版本Release8与MDL的关系的详细解读

最近联系了决策树的作者Quinlan教授,搞清了网上对C4.5的一些不够前沿的描述, 《Inferring Decision Trees Using the Minimum Description Length Principle*》 《Improved Use of Continuous Att...

2018-10-21 15:48:26

阅读数:15

评论数:0

some understanding of《Inferring Decision Trees Using the Minimum Description Length Principle*》

《Inferring Decision Trees Using the Minimum Description Length Principle*》 Information And Computation 80, 227-248(1989) I feel difficuly in comput...

2018-10-20 20:31:51

阅读数:23

评论数:1

some understanding of《Improved Use of Continuous Attributes in C4.5》

Here are formulas provided in “Improved Use of Continuous Attributes in C4.5” 1996,Journal of Artificial Intelligence Research 4 (1996)77-90 Info(D)=...

2018-10-18 23:08:15

阅读数:23

评论数:2

ubuntu16.04終端補全忽略大小寫

gedit ~/.inputrc set completion-ignore-case on

2018-10-15 19:18:52

阅读数:12

评论数:0

通俗讲清楚为什么使用信息熵增益比而不是信息熵增益?

来举个简单的例子: 数据集D(出去玩是标签) A代表属性,A=心情、天气 心情 天气 出去玩 好 晴朗 玩 不好 下雨 不玩 不好 刮风 不玩 好了 ,现在建立决策树,根节点是啥? 第一种方式(信息熵增益): 令A=天气 总熵S(D)=−13log213−23log2...

2018-10-13 21:49:38

阅读数:14

评论数:0

ID3的REP(Reduced Error Pruning)剪枝代码详细解释+周志华《机器学习》决策树图4.5、图4.6、图4.7绘制

处理数据对象:离散型数据 信息计算方式:熵 数据集:西瓜数据集2.0共17条数据 训练集(用来建立决策树):西瓜数据集2.0中的第1,2,3,6,7,10,14,15,16,17,4 请注意,书上说是10条,其实是上面列出的11条。 验证集(用来对决策树剪枝):西瓜数据集2.0中的5,8,9,11...

2018-10-13 18:42:48

阅读数:45

评论数:0

周志華《機器學習》圖4.4和图4.9繪制(轉載+增加熵顯示功能)

代碼來自參考鏈接: https://blog.csdn.net/leafage_m/article/details/79629074 本文的貢獻是: ①修正參考鏈接中,算法第3種情況中的投票問題的相關代碼, 原文代碼函數makeTreeFull有誤,會導致生成图4.4的&a...

2018-10-12 15:28:28

阅读数:11

评论数:0

ID3决策树中连续值的处理+周志华《機器學習》图4.8和图4.10绘制

转载自 https://blog.csdn.net/Leafage_M/article/details/80137305 用一句话总结这篇博客的内容就是: 对于当前n条数据,相邻求平均值,得到n-1个分割值,要点如下: ①连续数值特征的熵计算就是对上面的n-1个分割值不停尝试, 尝试得到最佳分割值...

2018-10-12 14:37:07

阅读数:23

评论数:0

周志华《机器学习》决策树图4.5勘误

根据书上的截图,我们知道,这个图4.5是根据表4.2的训练集生成的,也就是说,没有选用全部的数据集, 并且上述提到使用的信息增益,一般情况下,信息增益我们通常指的是Entropy,而不是Gini 表4.2如下: 图4.5如下: 下面开始细致的分析: 这个图4.5有10个叶子节点,所以必须有至...

2018-10-08 15:02:10

阅读数:44

评论数:0

python2.和python3.x-matplotlib中文显示为方块-中文不显示-故障原理研究与解决

matplot的字体问题,有以下3种方式 一种是从pylab中进行全局管理,可以管理任意实验相关的字体,可以是和matplot无关的实验的字体问题的管理 一种是matplot的配置文件,进行全局管理 一种是.py文件中临时加入配置语句 网上具体的解决方案很多,但是我们会发现拿来用的时候,有时候见效...

2018-10-07 16:01:57

阅读数:107

评论数:0

sklearn没有实现ID3算法

https://stackoverflow.com/questions/32277562/how-to-set-up-id3-algorith-in-scikit-learn http://scikit-learn.org/stable/modules/tree.html#tree-algorit...

2018-10-06 20:47:28

阅读数:25

评论数:0

《统计学习方法》P59决策树绘制-sklearn版本

原始数据集见: https://blog.csdn.net/ruggier/article/details/78756447 这个数据集的意思是: 因为银行怕贷款申请者还不起贷款,所以要判断贷款者的各种情况,以便绝对是否对贷款申请者发放贷款。 因为使用sklearn需要数字类型的数据,不能是字符串...

2018-10-06 15:40:54

阅读数:23

评论数:0

numpy.matrixlib.defmatrix.matrix写入csv文件

代码如下: import pickle from numpy import * import numpy p=open('./svmDat27','r') my_matrix=pickle.load(p) # print type(di)#<class '...

2018-10-05 14:56:01

阅读数:22

评论数:0

机器学习实战第15章pegasos算法原理剖析以及伪代码和算法的对应关系

Pegasos原文是: http://www.ee.oulu.fi/research/imag/courses/Vedaldi/ShalevSiSr07.pdf 还是挺长的,论文结构是: 第1~6页:主要原理 第7~15页:讲一些定理配合核函数使用的一些理论 第16~26页:实验和参考文献 对于急...

2018-10-04 22:53:12

阅读数:62

评论数:0

等式约束和不等式约束下的KKT条件求法

一、写在前面 本篇内容主要写非线性规划等式约束和不等式约束下的KKT条件,主要通过举例说明。 二、等式约束下的KKT条件 1、 题目描述 考虑等式约束的最小二乘问题 minimizexTxsubject toAx=bminimize \quad x^Tx \\ subje...

2018-10-04 17:26:17

阅读数:21

评论数:0

次梯度(subgradient)

次导数 设f在实数域上是一个凸函数,定义在数轴上的开区间内。 这种函数不一定是处处可导的,例如绝对值函数f(x) = |x| 。 对于下图来说,对于定义域中的任何x0,我们总可以作出一条直线,它通过点(x0, f(x0)),并且要么接触f的图像,要么在它的下方。 直线(红线)的斜率称为函数的次导数...

2018-10-04 17:13:07

阅读数:33

评论数:0

svm硬间隔与软间隔(转)

硬间隔:完全分类准确,其损失函数不存在;其损失值为0;只要找出两个异类正中间的那个平面;软间隔:允许一定量的样本分类错误;优化函数包括两个部分,一部分是点到平面的间隔距离,一部分是误分类的损失个数;C是惩罚系数,误分类个数在优化函数中的权重值;权重值越大,误分类的损失惩罚的越厉害。误分类的损失函数...

2018-10-04 17:05:53

阅读数:10

评论数:0

SVM入门(八)松弛变量(转)

转载地址:SVM入门(八)松弛变量 现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而变成了线性可分的。就像下图这样: 圆形和方形的点各有成千上万个(毕竟,这就是我们训练集中文档的数量嘛,当然很大了)。现在想象我们有另一个训练集,只比原先这个训练集多了一篇文章,映射到高维空间以后...

2018-10-04 17:05:08

阅读数:16

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭