关闭

《算法导论》第12章 二叉查找树 (2)查找、插入与删除

标签: 算法nulldeleteinsertsearchc
7206人阅读 评论(2) 收藏 举报
分类:


1. 查找

利用二叉查找树左小右大的性质,可以很容易实现查找任意值和最大/小值。

BSTNode * bst_search(BSTNode *node, int key)
{
     while (node && key != node->key) {
          if (key < node->key)
               node = node->left;
          else
               node = node->right;
     }
     return node;
}

BSTNode * bst_minimum(BSTNode *node)
{
     while (node->left != NULL)
          node = node->left;
     return node;
}


2. 插入

插入新结点的逻辑比较简单,关键是确定插入位置。

1. 首先为新结点分配内存并初始化。

2. 从根结点开始比较,小于已存在结点的键值则继续与其左子结点比较,
     否则与其右子结点比较。一直这样比较到叶子结点从而确定插入位置。

3. 将新结点与此叶子结点关联。

void bst_insert(BSTNode **root, int key, char *val)
{
     // 1.New node inserted to BST
     BSTNode *newNode = malloc(sizeof(BSTNode));
     newNode->left = newNode->right = NULL;
     newNode->key = key;
     newNode->value = val;
    
     // 2.Locate insert location
     BSTNode *pNode = NULL;
     BSTNode *node = *root;
     while (node != NULL) {
          pNode = node;
          if (key < node->key)
               node = node->left;
          else
               node = node->right;
     }
    
     // 3.Link newNode to pNode
     newNode->parent = pNode;

     // Link pNode to newNode
     if (pNode == NULL)
          *root = newNode;
     else if (key < pNode->key)
          pNode->left = newNode;
     else
          pNode->right = newNode;         
}


3. 删除


3.1 三种情况

删除二叉查找树中的结点稍微复杂一些,根据要删除结点的孩子结点的个数
,可以分为三种情况来处理:(假定要删除的结点为Z)



1. 结点Z没有孩子结点,那么直接删除Z就行了。

2. 结点Z有一个孩子结点,那么删除Z,将Z的父结点与此孩子结点(子树)关联就可以了。
(图中的a和b)

3. 结点Z有两个孩子结点,删除Z该怎样将Z的父结点与这两个孩子结点关联呢?
这种情况下不能直接删除Z,而是要用Z的后继(比Z的键值稍大的结点)来替代Z。
实现方法就是将后继从二叉树中删除,将后继的数据覆盖到Z中。
(图中的d)

图片来自《算法导论》第三版,与第二版的删除算法不太一样,而且多处理了一种特殊情况c,
即删除结点Z是二叉树的根结点。后面的删除代码是第二版的算法,在看删除代码前,先看
如何找到一个结点的后继。


3.2 后继

一个结点的后继是该结点的后一个,即比该结点键值稍大的结点。
所以,该结点右子树中的最小结点就是该结点的后继。如图结点7的后继就是9。
即可以直接从该结点的右子树中,沿左一直遍历到叶子结点从而找到最小值。



但如果该结点没有右孩子怎么办?例如结点13的后继。
结点没有右孩子,说明该结点在子树中是最大值。
那么就要找到13所在子树的父结点,并且:

1. 该子树的是这个父结点的左孩子。
2. 高度最低的这样的父结点。

BSTNode * bst_successor(BSTNode *node)
{
     if (node->right != NULL)
          return bst_minimum(node);

     BSTNode *sucNode = node->parent;
     while (sucNode != NULL && node == sucNode->right) {
          node = sucNode;
          sucNode = sucNode->parent;
     }
     return sucNode;
}


3.3 删除

学会了如何找到任意结点的后继,现在接着说二叉查找树的结点删除。
对于情况3,要删除结点Z的左右孩子都存在的情况,要用Z的后继要替代Z。
这需要先删掉后继,那如果Z的后继也有两个孩子怎么办?

这种情况是不可能的。习题12.2-5要证明的就是:如果二叉查找树中的
某个结点有两个子女,则其后继没有左子女,其前趋没有右子女。
简单地想,后继的左子女比后继小,结点与后继之间是不可能有其他结点的。

删除的步骤:

1. 确定实际要删除的结点是Z还是Z的后继。

2. 实际删除结点的孩子,Z的左/右孩子或者后继的右孩子。

3. 将实际要删除结点的父结点与其孩子关联。

4. 如果实际删除的是后继,则把后继中的数据拷贝到Z,替换它。

BSTNode * bst_delete(BSTNode **root, BSTNode *delNode)
{
     // Real delete node: delNode or its successor
     // (if delNode has both left and right child)
     BSTNode *realDelNode;
     if (delNode->left && delNode->right)
          realDelNode = bst_successor(delNode);
     else
          realDelNode = delNode;

     // Child of real delete node
     BSTNode *childNode;
     if (delNode->left)
          childNode = realDelNode->left;
     else
          childNode = realDelNode->right;

     // Link realDelNode child and parent
     if (childNode)
          childNode->parent = realDelNode->parent;

     if (realDelNode->parent == NULL)
          *root = childNode;
     else if (realDelNode == realDelNode->parent->left)
          realDelNode->parent->left = childNode;
     else
          realDelNode->parent->right = childNode;

     // Copy successor data to delNode (override)
     // if real delete node is not delNode but its successor         
     if (realDelNode != delNode) {
          delNode->key = realDelNode->key;
          delNode->value = realDelNode->value;
     }

     return realDelNode;
}


3
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

【算法导论】二叉搜索树的插入和删除

阐述二叉搜索树的插入和删除节点操作。
  • cyp331203
  • cyp331203
  • 2015-01-11 11:47
  • 1634

数据结构与算法之二叉搜索树插入、查询与删除

1 二叉搜索树(BSTree)的概念二叉搜索树又被称为二叉排序树,那么它本身也是一棵二叉树,那么满足以下性质的二叉树就是二叉搜索树: 1、若左子树不为空,则左子树上左右节点的值都小于根节点的值 2、若它的右子树不为空,则它的右子树上所有的节点的值都大于根节点的值 ...
  • chenliguan
  • chenliguan
  • 2016-10-28 15:11
  • 1179

红黑二叉查找树

#include //红黑二叉查找树 //红黑二叉查找树是一种平衡二叉树,是基于2-3查找树的基础上演变的 //这里不对2-3查找树的算法进行描述,感兴趣的朋友可以自行了解一下 //2-3查找树的实现原理. // //在2-3查找树算法中,难点就是3-Node类型(含有2个key,3个子节点的...
  • liujianfeng1984
  • liujianfeng1984
  • 2015-08-09 19:18
  • 1001

二叉搜索树的定义、查找、插入和删除

二叉搜索树的定义 二叉搜索树,也称有序二叉树,排序二叉树,是指一棵空树或者具有下列性质的二叉树: 1. 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 2. 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 3. 任意节点的左、右子树也分别为二叉查...
  • yanxiaolx
  • yanxiaolx
  • 2016-07-21 21:59
  • 4906

平衡二叉查找树(AVL)的查找、插入、删除

1.平衡二叉查找树
  • lpp0900320123
  • lpp0900320123
  • 2014-09-18 10:46
  • 5304

二叉排序树的建立、插入、删除、查找、4种遍历 C++完整实现

#include #include #include using namespace std; typedef int KeyType; #define NUM 13 class BinSTree; class BinStreeNode { public: KeyType key; BinSt...
  • u010367506
  • u010367506
  • 2014-04-01 15:25
  • 2791

二叉排序树(查询、插入、删除)

“二叉排序树,又称为二叉查找树。它或者是一颗空树,或者具有下列性质的二叉树。 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值; 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值; 它的左、右子树也分别为二叉排序树。 构造一颗二叉排序树的目的,其实...
  • wangyunyun00
  • wangyunyun00
  • 2014-04-14 22:00
  • 17172

《算法导论》第12章 二叉查找树 (2)查找、插入与删除

1. 查找 利用二叉查找树左小右大的性质,可以很容易实现查找任意值和最大/小值。 [cpp] view plaincopy BSTNode * bst_search(BSTNode...
  • overstack
  • overstack
  • 2013-04-17 10:33
  • 606

二叉搜索树的构建,遍历,查找,删除

本篇博客重点研究二叉搜索树。数据结构中为了存储和查找的方便,用各种树结构来存储文件,本章就浅谈一下各种树的表示方法、特点及各自的用途,本章设计的树结构包括:二叉搜索树(二叉查找树,二叉排序树)、平衡二叉树(AVL树)、红黑树、B-树、B+树、字典树(trie树)、后缀树、广义后缀树。
  • Gane_Cheng
  • Gane_Cheng
  • 2016-09-23 21:49
  • 1682

二叉查找树原理分析及查找、插入、删除、遍历实现

二叉查找树作为一种最简单的二叉排序树,它是特殊的二叉树:对于二叉树,假设x为二叉树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] >= key[x]。那么,这棵树就是二叉查找树。 二叉查找树具有如下性质:1、如果节点左...
  • miliermili
  • miliermili
  • 2014-04-08 19:29
  • 1866
    个人资料
    • 访问:3332259次
    • 积分:24253
    • 等级:
    • 排名:第317名
    • 原创:313篇
    • 转载:56篇
    • 译文:3篇
    • 评论:1580条
    博客专栏
    最新评论