二叉查找树的插入和删除详解

本文详细介绍了二叉查找树的定义、性质,并重点探讨了插入和删除操作。插入操作包括不允许插入重复元素,以及如何高效地找到插入位置。删除操作则分为三种情况:无子树、单子树和双子树,每种情况都有对应的处理策略。文章还提供了C风格的实现思路,并给出了完整测试程序的提示。
摘要由CSDN通过智能技术生成

二叉查找树是如下定义的:

(1)  左子树不空,则左子树上的所有结点的值均小于根结点的值

(2)  右子树不空,则右子树上的所有结点的值均大于根结点的值

二叉查找树可以为空,二叉查找树是递归定义的,也就是说其左右子树也为二叉查找树。

二叉查找树是一种动态查找表,可以进行动态地插入和删除。前面的定义中我们假定二叉查找树不含有相同元素。

由定义可知二叉查找树的中序序列为一个递增序列

常见的二叉查找树操作有求最小元素findMin(),求最大元素findMax(),判断查找树是否非空isEmpty(),判断是否包含给定元素contains(),输出所有元素printTree(),置空查找树makeEmpty(),向查找树中插入给定元素x,insert(x),在查找树中删除给定元素x,remove(x)。

下面先讨论最重要的插入和删除操作,接着给出完整的C风格实现

1、基本结构定义

class Student
{
	public:
		int key;
		string major;
		Student(int k=int(),string s="") : key(k), major(s){}
		void operator=(const Student& rhs);
};
typedef Student ElementType;
typedef int KeyType;

typedef struct BSTNode
{
	ElementType data;
    struct BSTNode* lchild;
    struct BSTNode* rchild;
}BSTNode, *BST;

详细信息请看后面完整程序

2、插入

(1)  不允许插入相同关键字,若二叉查找树中存在该关键字,则不插入

(2)  我们可以先检索二叉树,看查找树中是否含有该关键字,若不存在,再做一次扫描将结点插入到适当位置。使用这种方式,为插入一个该关键字,做了两次扫描。

(3)  注意到,插入的结点总是作为某一叶子节点的子结点,我们可以在第一次扫描过程中就确定待插入的位置,即把查找是否存在该关键字查找可能的插入点在一次扫描中完成,提高插入效率。

(4)  查找递归实现

/*
  description:在以t为根结点的二叉查找树中,查找关键字为key的结点
  若查找成功,指针p指向该结点,返回true,
  否则指向查找路径上的最后一个结点并返回false
  指针f指向根结点t的父节点 
*/
bool searchBST_recursion(BST t, KeyType key, BSTNode* f, BSTNode*& p)
{
	if(t == NULL)//查找失败 
	{
		p = f;
		return false;
	}
	else if(key == t->data.key)//查找成功 
	{
		p = t;
		return true;
	}
	else if(key < t->data.key)
		return searchBST_recursion(t->lchild,key,t,p);//左子树中继续查找 
	else 
		return searchBST_recursion(t->rchild,key,t,p);//右子树中继续查找 
}

(5)  查找非递归实现

bool searchBST(BST t, KeyType key, BSTNode* f, BSTNode* &p)
{
	while(t && key != t->data.key)
	{
		f = t;
		if(key < t->data.key)
		{
			t = t->lchild;
		}
		else
		{
			t = t->rchild;
		}			
	}
	if(t)//查找成功 
	{
		p = t;
		return true;
	}
	else
	{
		p = f;
		return false;
	}
}

(6)  插入给定元素

void insertBST(BST& t,ElementType elem)
{
	BSTNode * p = NULL;
	if(!searchBST(t, elem.key, NULL, p))//查找失败,不含该关键字&#
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值