二叉树相关练习题(C++)

本文详细介绍了使用C++实现的二叉树相关操作,包括递归和非递归方法的先序、中序、后序遍历,层次遍历,二叉树的序列化与反序列化,平衡二叉树与二叉搜索树的判断,以及寻找节点间最大距离等问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、二叉树
1、用递归方法实现二叉树的先序、中序、后序遍历
class  TreeToSequence {
public :       
      void  preOrder(TreeNode* root,vector< int > &pre) {
          if  (!root)
              return ;
          pre.push_back(root->val);
          preOrder(root->left,pre);
          preOrder(root->right,pre);      
     }
 
     void  inOrder(TreeNode* root,vector< int > &in) {
         if  (!root)
             return ;
         inOrder(root->left,in);
         in.push_back(root->val);
         inOrder(root->right,in);
     }
 
     void  postOrder(TreeNode* root,vector< int > &post) {
         if  (!root)
             return ;
         postOrder(root->left,post);
         postOrder(root->right,post);
         post.push_back(root->val);
     }
 
     vector<vector< int > > convert(TreeNode* root) {
         vector<vector< int > > vRecur;
         vector< int > pre,in,post;
 
         preOrder(root,pre);
         inOrder(root,in);
         postOrder(root,post);
         
         vRecur.push_back(pre);
         vRecur.push_back(in);
         vRecur.push_back(post);
         return  vRecur;
     }
};

2、用非递归方法实现二叉树的先序、中序、后序遍历
class  TreeToSequence {
public
:
    vector< int > preOrder(TreeNode* root) {
        vector< int > pre;
        stack<TreeNode*> s;
        s.push(root);
         while  (!s.empty()) {
            TreeNode* temp = s.top();
            pre.push_back(temp->val);
            s.pop();            
             if  (temp->right)
                s.push(temp->right);
             if  (temp->left)
                s.push(temp->left);
        }
         return  pre;
    }

    vector< int > inOrder(TreeNode* root) {
        vector< int > in;
        stack<TreeNode*> s;
        TreeNode* temp = root;

         while  (temp || !s.empty()){            
             while  (temp) {
                s.push(temp);
                temp = temp->left;
            }
            temp = s.top();
            s.pop();
            in.push_back(temp->val);
            temp = temp->right;
        }
         return  in;
    }

    vector< int > postOrder(TreeNode* root) {
        vector< int > post;
        stack<TreeNode*> s;
        TreeNode *temp = root,*previsited =  NULL ;

         while  (temp || !s.empty()){            
             while  (temp) {
                s.push(temp);
                temp = temp->left;
            }
            temp = s.top();
             if  (!temp->right || temp->right == previsited) {
                post.push_back(temp->val);
                s.pop();
                previsited = temp;
                temp =  NULL ;
            }
             else
 
                temp = temp->right;          
        }
         return  post;
    }

    vector<vector< int > > convert(TreeNode* root) {

        vector<vector< int > > vNonRecur;
         if  (!root)
             return  vNonRecur;
        vNonRecur.push_back(preOrder(root));
        vNonRecur.push_back(inOrder(root));
        vNonRecur.push_back(postOrder(root));
         return  vNonRecur;
    }
};

3、按照层次打印二叉树,且不同层的数据要打印在不同行。可把不同层的数据存在不同的数组中模拟打印过程。
解法:①二叉树的层序遍历要用到队列。队头结点出队则接着将其左右子节点入队。
           ②不同层打印在不同行就要考虑在合适的节点处换行。定义两个指针curLast和nexLast分别记录正在打印的行的最右结点和下一行的最右结点。nexLast跟踪入队结点,则当打印结点是当前层最右结点curLast时紧接着的入队结点也是下一行的最右结点;若当前打印的结点为curLast则换行,接着将下一行最右结点指针nexLast赋值给curLast。

class  TreePrinter {
public
:
    vector<vector< int > > printTree(TreeNode* root) {
        vector<vector< int > > res;
        vector< int > temp;
        queue<TreeNode*> q;
        TreeNode *curLast = root,*nexLast = NULL,*cur;
        q.push(root);

         while  (!q.empty()) {
            cur = q.front();
            temp.push_back(cur->val);
            q.pop();                        
             if  (cur->left) {
                q.push(cur->left);
                nexLast = cur->left;    
<
(1)非递归定义 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除结点外n0 , 其余的每一个结点都有且仅有一个直接前驱结点;有零个或多个直接后继结点。 (2)递归定义 一颗大树分成几个大的分枝,每个大分枝再分成几个小分枝,小分枝再分成更小的分枝,… ,每个分枝也都是一颗树,由此我们可以给出树的递归定义。 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除根结点之外的其他结点分为m(m≥0)个互不相交的集合T0,T1,…,Tm-1,其中每个集合Ti(0≤i<m)本身又是一棵树,称为根的子树(subtree)。 2、掌握树的各种术语: (1) 父母、孩子与兄弟结点 (2) 度 (3) 结点层次、树的高度 (4) 边、路径 (5) 无序树、有序树 (6) 森林 3、二叉树的定义 二叉树(binary tree)是由n(n≥0)个结点组成的有限集合,此集合或者为空,或者由一个根结点加上两棵分别称为左、右子树的,互不相交的二叉树组成。 二叉树可以为空集,因此根可以有空的左子树或者右子树,亦或者左、右子树皆为空。 4、掌握二叉树的五个性质 5、二叉树的二叉链表存储。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值